
 
 
 
 
 
 
 
 

OPOS ADK 
 

Application Development Guide 
General Functions 

 
 
 
 
 
 
 
 

Version 3.00  Feb. 2019 
 

 
 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 



Notes  
(1) Reproduction of this documentation by any means in part or in whole is prohibited.  
(2) Contents of this documentation are subject to change without notice.  
(3) Epson will not be responsible for any consequences resulting from the use of any information 

in this documentation.  
(4) Comments and notification of any mistakes in this documentation are gratefully accepted.  
  
Trademarks  
Microsoft®, Windows®, Windows Server®, Visual Basic® and Visual C++® are trademarks or registered 
trademarks of Microsoft Corporation in the United States and/or other countries. 
EPSON® and ESC/POS® are registered trademarks of Seiko Epson Corporation.  
Other product and company names used herein are for identification purposes only and may be 
trademarks or registered trademarks of their respective companies. 
 

Copyright © 2000-2019 Seiko Epson Corporation 



 
OPOS ADK 

Application Development Guide 

iii

Contents 

SECTION 1. PREFACE .....................................................................................................................................1 

SECTION 2. GENERAL INFORMATION ..........................................................................................................2 
2.1 Object Names ...........................................................................................................................................2 
2.2 Device Information Reference ..................................................................................................................2 
2.3 Opening and Closing Devices ..................................................................................................................2 
2.4 Device Claim/Release ..............................................................................................................................4 
2.5 Device Enable/Disable..............................................................................................................................5 
2.6 Device Self Diagnostics ............................................................................................................................5 
2.7 Character Sets ..........................................................................................................................................6 
2.8 Event Management...................................................................................................................................7 

2.8.1 DataEvent...........................................................................................................................................7 
2.8.2 DirectIOEvent .....................................................................................................................................7 
2.8.3 ErrorEvent ..........................................................................................................................................7 
2.8.4 OutputCompleteEvent ........................................................................................................................8 
2.8.5 StatusUpdateEvent ............................................................................................................................8 

2.9 Results of Changing Properties or Running Methods ..............................................................................8 
2.10 Extended Errors ......................................................................................................................................8 
2.11 Clearing the Input and Output Buffers ....................................................................................................9 
2.12 Capability Property..................................................................................................................................9 
2.13 Notifying Power Status............................................................................................................................9 
2.14 Device Statistics....................................................................................................................................10 

SECTION 3. POS PRINTER ............................................................................................................................11 
3.1 Printer Stations .......................................................................................................................................11 
3.2 Escape Sequences.................................................................................................................................12 
3.3 MapMode Settings ..................................................................................................................................13 
3.4 Line Information ......................................................................................................................................13 
3.5 Sending Data to the Printer ....................................................................................................................14 

3.5.1 Synchronous Printing on One Station..............................................................................................14 
3.5.2 Asynchronous Printing on One Station ............................................................................................15 
3.5.3 Printing on Two Stations at The Same Time ...................................................................................17 
3.5.4 Setting the Logo ...............................................................................................................................18 
3.5.5 Printing Bar Codes ...........................................................................................................................18 
3.5.6 Bitmap Printing .................................................................................................................................19 
3.5.7 Rotated Printing................................................................................................................................22 
3.5.8 Immediate Printing ...........................................................................................................................23 
3.5.9 Collective Printing.............................................................................................................................23 

3.6 Form Insertion/Removal and Slip Printing ..............................................................................................24 
3.7 Paper Cutting ..........................................................................................................................................25 
3.8 Checking the Printer State......................................................................................................................27 
3.9 Printer Errors and Status ........................................................................................................................28 
3.10 Clearing the Output Buffer ....................................................................................................................29 
3.11 Testing with the CheckHealth Method..................................................................................................29 
3.12 Cartridge State......................................................................................................................................29 
3.13 Color Printing ........................................................................................................................................30 
3.14 Mark Sensed Paper Support ................................................................................................................30 
3.15 Printing on Both Sides ..........................................................................................................................31 
3.16 Things to Consider when Using Properties ..........................................................................................31 

SECTION 4. LINE DISPLAY............................................................................................................................32 
4.1 Window Creation/Destruction .................................................................................................................32 
4.2 Window Rows/Columns..........................................................................................................................34 
4.3 Showing Data on the Display..................................................................................................................34 
4.4 Window Clear/Refresh............................................................................................................................35 
4.5 Descriptors..............................................................................................................................................36 



 
OPOS ADK 

Application Development Guide 

iv

4.6 Scrolling the Display ...............................................................................................................................37 
4.7 Marquee Settings....................................................................................................................................38 
4.8 Testing with the CheckHealth Method....................................................................................................40 
4.9 Setting the Glyph Character Definition ...................................................................................................40 

SECTION 5. MICR ...........................................................................................................................................42 
5.1 Form Insertion/Removal .........................................................................................................................42 
5.2 Reading Data from the MICR .................................................................................................................43 
5.3 Error Management ..................................................................................................................................44 
5.4 Testing with the CheckHealth Method....................................................................................................45 

SECTION 6. CASH DRAWERS.......................................................................................................................46 
6.1 Drawer Open/Close ................................................................................................................................46 
6.2 Checking Drawer Status .........................................................................................................................46 
6.3 Testing with the CheckHealth Method....................................................................................................47 
6.4 Multi-drawer Configuration Support ........................................................................................................47 

6.4.1 Multi-drawers with One Status .........................................................................................................47 
6.4.2 Multi-drawers with Two Status .........................................................................................................47 

SECTION 7. CHECKSCANNER......................................................................................................................48 
7.1 Form Insertion/Removal .........................................................................................................................48 
7.2 Reading Data from the CheckScanner...................................................................................................49 
7.3 Saving/Reading/Deleting Scanned Data ................................................................................................50 
7.4 Error Management ..................................................................................................................................51 
7.5 Testing with the CheckHealth Method....................................................................................................52 

SECTION 8. ELECTRONIC JOURNAL...........................................................................................................53 
8.1 Writing Electronic Journal data ...............................................................................................................53 
8.2 Marker setting .........................................................................................................................................53 
8.3 Specifications for specified range...........................................................................................................53 
8.4 Non-simultaneously printing of ElectronicJournal data ..........................................................................53 



 
OPOS ADK 

Application Development Guide 

1

 

Section 1.  Preface 

This manual is an application development guide containing information that will assist in 
building POS applications using the API functions supported by OPOS.  Included in this guide 
are numerous details on how to utilize Visual Basic to take advantage of the many functions of 
OPOS that run the various devices used in a POS system.  There are also many device-specific 
programming examples included that run the various capabilities of devices supported by 
OPOS.  Please use this manual for your benefit. 
 
Throughout the manual, the “OPOS Application Development Kit” will be shown as “OPOS ADK”. 
 
For information on installing and setting up the OPOS ADK, please refer to the "EPSON OPOS ADK 
User's Manual (Installer/ SetupPOS/ TMUSB)".  For detailed explanations of API functions, please 
refer to the “UPOS 1.14.1” created by OPOS Committee. 
 
 
 
 



 
OPOS ADK 

Application Development Guide 

2

Section 2.  General Information 

This section contains an explanation of programming functions that are common to all devices. 
 

2.1  Object Names 
When explaining how to use OPOS API in Visual Basic, API’s will have the designator “[Object].” 
before the API name.  Object names are created automatically when an ActiveX control is placed on 
a form, but can be changed by the user.  Check the object's names in the form’s properties box. 

 
Default name: 

Line Display..............OPOSLineDisplayn 
POSPrinter ...............OPOSPOSPrintern 
MICR........................OPOSMicrn 
Cash Drawer ...........OPOSCashDrawern 
CheckScanner..........OPOSCheckScannern  
ElectronicJournal......OPOSElectronicJournaln 
n is a number determined when the control is placed on the form. 

 
 
2.2  Device Information Reference 

All devices include the following information.  Use this information as the need arises.   
 
ControlObjectDescription .................Returns a string distinguishing the custom control. 
ControlObjectVersion .......................Returns the custom control’s version number. 
ServiceObjectDescription .................Returns a string distinguishing the service object.* 
ServiceObjectVersion .......................Returns the service object’s version number.* 
DeviceDescription ............................Returns a string distinguishing the device.* 
DeviceName .....................................Returns the name of the device.* 
 
*Values cannot be viewed unless the device is opened successfully. 

 
 

2.3  Opening and Closing Devices 
In order to use the devices that are connected to the POS system, it is necessary to open each 
device.  By opening a device, it is connected to the application and is made available for use.  
Each device must be opened individually. 
 
The Open method is used to open devices.  The DeviceName (a variable used to distinguish the 
device) parameter that is passed to the Open method uses the DeviceNameKey* or 
LogicalDeviceName* for each specific device.  If you are not sure of a device’s name, it can be 
found by running the SetupPOS utility. For more details, refer to UPOS. 
 
DeviceNameKey and LogicalDeviceName values can be added or changed from the SetupPOS 
utility.  LogicalDeviceName is an alias name used to distinguish a device from others.  By using 
a LogicalDeviceName, a program can be made more portable and easier to update. 
 
After using the Open method, a result is returned to the program.  If the Open failed, the 
ResultCode property is handed an OPOS_E_CLOSED value. From the UPOS Release 1.5, an 
error detail will be further explained in the OpenResult property.  It can be referred to when 
necessary. A return value of the Open method can also be referred. 



 
OPOS ADK 

Application Development Guide 

3

If the Open method is successful, the ResultCode property is set to zero and any other codes 
returned by methods used after that can be referred to when necessary.  To learn more about 
the OpenResult or the ResultCode property, consult UPOS. 
 
The following is an example of opening a printer device. 
 

Dim RC As Long 

RC = OPOSPOSPrinter1.Open (“Unit1”) 

If RC<>OPOS_SUCCESS Then 

 If OPOSPOSPrinter1.OpenResult = OPOS_OR_ALREADYOPEN Then 

      MsgBox”Error On Opening POS Printer – Already Open” 

     ElseIf OPOSPOSPrinter1.OpenResult = OPOS_OR_REGBADNAME Then 

      MsgBox”Error On Opening POS Printer – DeviceName Invalid” 

     ElseIf …….. 

         ….. 

        ….. 

     Else 

     Open = 1 

End If 

 
 
For more details on errors that may occur when opening devices, please consult the “Device 
Class Programming” sections of this manual. 
 
After finishing use of a device in a program, please be sure to use the Close method to close the 
device.  This will insure that the device will not cause any unexpected problems and become 
unable to be used. 
 
After using the Close method, a result is returned to the program.  When a device is closed, an 
OPOS_E_CLOSED value is placed in the ResultCode property so the program can check to 
insure that the close method was successful. 
 
The following is an example of closing a printer device. 
 
Dim RC As Long 
RC = OPOSPOSPrinter1.Close 
If RC <> OPOS_SUCCESS Then 
 MsgBox “Error on closing POSPrinter.” 
Else 
  Openflag = 0 
End If 



 
OPOS ADK 

Application Development Guide 

4

2.4  Device Claim/Release 
An application can gain exclusive use of a device through the ClaimDevice method.  In the API, 
there are devices that can and cannot be used if they are not claimed.  To confirm whether a 
device needs to be claimed or not, please refer to the “Device Summary” section of UPOS. 
 
By using the ClaimDevice and ReleaseDevice methods, other applications and multi-processes 
can use the device. For example, a printer is claimed by process A.  While the printer is claimed, 
process B cannot use the printer.  The ClaimDevice method will return an error.  If process A 
uses the ReleaseDevice method to release the printer, then process B can claim the printer and 
use it.  This example assumes that the printer is the same physical machine for both processes, 
but different devices using the same port through hydra settings will act in the same manner.  
When a printer and display are connected through hydra settings, if either one is claimed by a 
process, neither can be used by another process. 
 
When using the ClaimDevice method, the maximum number of milliseconds to wait for exclusive 
access to be satisfied is passed as a variable. 
 
If the ResultCode property has the value OPOS_E_TIMEOUT after the ClaimDevice method has 
been called, another process has accessed the device.  If OPOS_SUCCESS is returned, the 
device is available for use by the process. 
 
For more information on the errors that may occur when claiming devices, please consult 
manuals of each device. 
 
The following is an example of Claiming and Releasing a printer device. 
 

OPOSPOSPrinter1.ClaimDevice 2000 

If OPOSPOSPrinter1.ResultCode = OPOS_SUCCESS Then 

OPOSPOSPrinter1.DeviceEnabled = True 

OPOSPOSPrinter1.AsyncMode = False 

 OPOSPOSPrinter1.PrintNormal PTR_S_RECEIPT,”Chocolate $1.00” 

      + Chr(13) + Chr(10) 

OPOSPOSPrinter1.ReleaseDevice 

ElseIf OPOSPOSPrinter1.ResultCode = OPOS_E_TIMEOUT Then 

  MsgBox”Error On Claim – Printer Device is used by Another process.” 

ElseIf …… 

End If 
 
It is also possible to tell if a device is claimed or not by checking the Claimed property. 
 

If Not OPOSPOSPrinter1.Claimed Then 

    OPOSPOSPrinter1.ClaimDevice 2000  

End If 



 
OPOS ADK 

Application Development Guide 

5

2.5  Device Enable/Disable 
After opening a device, the device is placed in a disabled state.  In the API, there are devices 
that need to be enabled before use and some that do not.  To confirm whether a device needs 
to be enabled or not, please refer to the “Device Summary” section of UPOS. 
 
In the case where a device requires claiming, the device needs to execute ClaimDevice method 
before bring it to an enable state.  If the device is brought to an enable state without execution of 
the method, OPOS_E_NOTCLAIMED is returned 
 
If a device is in a disabled state, the device cannot transmit and receive data. 
 
The following is an example of switching a device (printer) between enabled and disabled 
states. 
 

If Not OPOSPOSPrinter1.DeviceEnabled Then 

     OPOSPOSPrinter1.DeviceEnabled = True ‘Enable 

Else 

     OPOSPOSPrinter1.DeviceEnabled = False ‘Disable 

End If 

 
2.6  Device Self Diagnostics 

Device diagnostics can be performed using the CheckHealth method.  There are three levels of 
diagnostics available that can be set with a corresponding number.  For a list of diagnostic levels 
and explanations, please refer to the "CheckHealth Method" section of UPOS.  Different devices 
allow different levels of diagnostic support.  Please refer to each device’s [Testing with the 
CheckHealth Method’s INTERACTIVE Check] section for further information. 
 
The results of using the CheckHealth method are placed in the CheckHealthText property.  The 
string returned to the CheckHealthText property is decided by the SO automatically, so there are 
not any common values for all devices. 
 
If a device is in the middle of sending data, an OPOS_E_BUSY error is returned.  Please run the 
CheckHealth method after all data has finished transmitting.  If a CheckHealth level that is not 
supported by the device is used, an OPOS_E_ILLEGAL error will be returned.  When any value 
other than OPOS_SUCCESS (e.g. OPOS_E_BUSY, OPOS_E_ILLEGAL, etc.) is returned, the 
CheckHealthText property cannot be updated.  The value in this property will remain the result 
of the prior condition. 
 
The following is an example of using the CheckHealth method to perform a diagnostic check. 
 

Dim RC As Long 

RC = OPOSPOSPrinter1.CheckHealth (OPOS_CH_INTERACTIVE) 

If RC = OPOS_SUCCESS Then 

    MsgBox “CheckHealth Successful = ” + OPOSPOSPrinter1.CheckHealthText 

Else 

    MsgBox “CheckHealth Failed” 

End If 
 



 
OPOS ADK 

Application Development Guide 

6

2.7  Character Sets 
The types of character objects that make up a character set are listed below. 
 
• Unique device character set 
• Code page 
• ASCII character set 
• Windows ANSI character set 
 
For information on what code pages are valid, please refer to your device’s product manual. 
 
Supported character set numbers can be referenced in the CharacterSetList property. 
 

Dim CSList As String 
CSList = OPOSPOSPrinter1.CharacterSetList 
 
By running the above code, the supported character set numbers are placed in the CSList 
variable as a text string.  (e.g.. “437,850,860,863,865,998”)  If it becomes necessary to 
determine if a character set is valid, the above property can be used. 
In order to actually specify a character set, use the CharacterSet property. 
 
OPOSPOSPrinter1.CharacterSet = 437    ‘Code page: American English. 
OPOSPOSPrinter1.CharacterSet = DISP_CS_ASCII   ‘ASCII character set. 
 
The Open method passes a default character set value of 437 (American English) when 
initialized. 
For information on the default values, please refer to the each device manual. The 
CharacterSetList property can be viewed immediately after the Open method has been called, 
but the CharacterSet property can only be viewed or set after the Open, Claim, and Enabled 
methods have been called. 
 
The following are examples of using character settings in a program. 

OPOSPOSPrinter1.CharacterSet = 858  *Code page FPC858 

*Printing  EURO characters 

OPOSPOSPrinter1.BinaryConversion = OPOS_BC_NIBBLE 

OPOSPOSPrinter1.PrintNormal PTR_S_RECEIPT,"=50=0:" 

 

OPOSPOSPrinter1.BinaryConversion = OPOS_BC_DECIMAL 

OPOSPOSPrinter1.PrintNormal PTR_S_RECEIPT,"213013010" 

 
When outputting more than 80H codes, needed to modify the method for specifying the 
characters using the BinaryConversion property.  For more information on the method for 
specifying the characters, please refer to the "BinaryConversion Property" in UPOS  
 
 
 
 
 
 



 
OPOS ADK 

Application Development Guide 

7

2.8  Event Management 
In programs using the OPOS API, much information is given to the application through Events.  
By placing a device’s object on a form, events that can be used by the object are pre-set in the 
application’s code.  Event management can be performed by using events to determine what to 
do when an Event fires.  As described below, there are five types of events available. 
 
To temporarily pause an event, use the FreezeEvents property.  If the FreezeEvents property is 
set to TRUE, events cannot be passed to the application.  To allow the processing of events, the 
FreezeEvents property should be set to FALSE, which will allow all events that occurred during 
the frozen time to fire in order. 
 
The five following sections contain explanations of the different types of events that may occur. 
 

2.8.1  DataEvent 
DataEvent lets the application know when data has been received from a device.  Events can be 
enabled/disabled by changing the TRUE/FALSE value of the DataEventEnabled property.  All 
data gathered while disabled will fire when control is returned by setting the DataEventEnabled 
property back to TRUE. 
The Auto Disable property that has been added to the UPOS Release 1.3 and later, influences 
on the DataEvent. If set the AutoDisable property to TRUE, the DeviceEnable property is set to 
FALSE at every time when the DataEvent is fired. 
The way to utilize this event depends upon the type of device that is being used.  Please consult 
the device’s programming section. 
 

2.8.2  DirectIOEvent 
DirectIOEvent are unique events that correspond to devices supported by us.  For detailed 
explanations, please refer to the "DirectIOEvent" section of respective device's "EPSON OPOS 
ADK MANUAL APPLICATION DEVELOPMENT GUIDE". 
 

2.8.3  ErrorEvent 
ErrorEvents are used to inform the program if an error has occurred while executing (e.g. While 
the printer is printing data).  This event will not fire if the program is not executing.  Error 
management can be performed by using the parameters passed to the application by the event. 
 
ResultCode -- 
Error reasons are included in the code. 
 
ResultCodeExtended -- 
If the result code returned is OPOS_E_EXTENDED, the ResultCodeExtended will contain a 
value that will further detail the meaning of the ResultCode property.  These codes are device-
dependent. Please refer to the “OPOS Application Header Files” appendix of UPOS or the 
OPOS .BAS file contents. 
Even if the ResultCode property is given a value other than OPOS_E_EXTENDED, it is possible 
that the ResultCodeExtended property will also be given a value.  To allow a program to obtain 
detailed information on possible errors, the ResultCodeExtended property can be checked.  
When no extended information is available, 0 will be the value. 
For information on these error values, please refer to respective device's "EPSON OPOS ADK 
MANUAL APPLICATION DEVELOPMENT GUIDE". 
 
Error Locus -- 

This value shows the place where the error occurred.  The value is device-dependent. 
Please refer to the device’s explanation in UPOS. 

 



 
OPOS ADK 

Application Development Guide 

8

pErrorResponse -- 
This value designates the response to the ErrorEvent.  The value is device-dependent. 
Please refer to the device’s explanation in UPOS. 

 
2.8.4  OutputCompleteEvent 

An OutputCompleteEvent is fired to the application when synchronous data has finished 
sending.  An OutputID is returned with this event.  The OutputID can be compared to the data 
sent ID to decide whether synchronous data has been completely sent or not.  The OutputID 
value can be checked by using the OutputID property after sending data.  The OutputID values 
are changeable, so variables should be used to store the values when necessary. 
 
Use of this event is device-dependent.  Please consult the device’s programming section. 
 

2.8.5  StatusUpdateEvent 
StatusUpdateEvent is fired to show that there has been a change in device status.   
The new functions that notifying the power status has been added to the UPOS Release 1.3 and 
later. If the CapPowerReporting supports the level (NONE, STANDARD, or ADVANCED), the 
status can be checked by using the event. 
Use of this event is device-dependent.  Please consult the device’s programming section. 
 
 

2.9  Results of Changing Properties or Running Methods 
The ResultCode property will be given a value after a property is changed or a method is run.  
When the property change or method is successful, the ResultCode property is given the value 
OPOS_SUCCESS.  If an error occurs, the error is sent to the ResultCode and/or 
ResultCodeExtended properties.  For information on these error values, please refer to the 
“ResultCode property” section in UPOS.  For device specific error explanations, please refer to 
the device’s error explanations in the “Device Class Programming” section. 
Use the properties and method return values to perform error management.  If an error is not 
properly handled, it may cause problems later on in the program. 
The codes used for ResultCodeExtended are determined by the device that is being used.  
However, if the device is hydra connected, there are times when codes for the first device in the 
connection will be returned.  For example, when a line display is hydra connected to a printer 
and an error occurs on the display because the printer's cover is open, the display will send it's 
own error, but the ResultCodeExtended will be OPOS_EPTR_COVER_OPEN from the printer. 
 
 

2.10  Extended Errors 
As for our own extended errors, please refer to the device’s error explanations in the “Device 
Class Programming” section.  Only Commons are mentioned as follows. 
 
[Common] 
 OPOS_EX_BADCO : Invalid CO Interface 
 OPOS_EX_BADPORT : Invalid Port 
 OPOS_EX_BADDEVICE : Invalid DeviceName 
 OPOS_EX_BADPROPIDX : Invalid index inside property 
 OPOS_EX_BADPROPVAL : Invalid property value 
 OPOS_EX_NOTSUPPORTED : Function not supported 
 OPOS_EX_NOASB : No ASB data returned 
 OPOS_EX_INPUT : No data returned 
 OPOS_EX_BUSY : Device busy  by (Async output) 
 OPOS_EX_INCAPABLE : Incapable of the function (corresponding capability 



 
OPOS ADK 

Application Development Guide 

9

  property is false) 
 OPOS_EX_INVALIDMODE : Invalid device mode 
 OPOS_EX_REOPEN : Device reopened 
 OPOS_EX_BADPEEKRANGE : PeekRange invalid 
 OPOS_EX_BADDISPRANGE : DispatchRange invalid 
 OPOS_EX_NOTCLAIMED : Not claimed (release method used) 
 OPOS_EX_TIMEOUT : Sync output timeout 
 OPOS_EX_PORTUSED : Port used by another 
 OPOS_EX_MICRMODE : MICR mode 
 OPOS_EX_PORTBUSY : HOST Port busy 
 OPOS_EX_MICRMODE : MICR in mode 
 OPOS_EX_BADINF : Invalid INF file 
 OPOS_EX_DEVBUSY : Device busy 
 OPOS_EX_SOVERSION : Invalid SO version 
 OPOS_EX_BADPARAM : Invalid parameter (general) 

(OPOS_EX_BADPARAM+1) : Invalid first parameter (general) 
(OPOS_EX_BADPARAM+2) : Invalid second parameter (general) 
(OPOS_EX_BADPARAM+3) : Invalid third parameter (general) 

: : Invalid xxx parameter 
: : 

 
 

2.11  Clearing the Input and Output Buffers 
By using the ClearInput and ClearOutput methods, all buffered data can be cleared from the 
buffer.  All relevant events will also be cleared at this time. 
 
 

2.12  Capability Property 
Devices’ capabilities vary depending upon the device class that is being used.  Due to this, it is 
impossible for this manual to provide complete class specific programming explanations for 
every device’s capability.  Properties that start with “Cap” hold information regarding available 
functions of the device.  It is recommended that these properties be used to manage cases 
where different devices supporting different functions may be attached. 
 
 

2.13  Notifying Power Status 
The new functions that notifying power status has been added to the UPOS Release 1.3 and 
later.  These are CapPowerReporting, PowerState, and the PowerNotify properties. For more 
details, please refer to the information on the “Device Power Reporting Model” section in UPOS. 
When the CapPowerReporting property is OFF_OFFLINE, the device power state cannot be 
distinguished whether it is powered on, or off. 
Under consideration of those features, please execute the recovery of the application. Each 
device’s supports for the PowerReporting property model are written in the each manual. 
When the device is connected using the pass-through connection (for instance, printer and 
display, etc.), the state of the signal line depends on the state of the currently selected device. 
For instance, the state of the signal line does not change even if the printer is turned off when 
the display is selected, and the power supply notification is not sent. The device that basically 
transmitted the last command is selected. 
 



 
OPOS ADK 

Application Development Guide 

10

2.14  Device Statistics 
The DeviceStatistics function is added in response to the compliance of the "UPOS 1.8". 
Please refer to the “EPSON OPOS ADK MANUAL APPLICATION GUIDE Device Statistics” for 
the details of the Device Statistics. 
 
 



 
OPOS ADK 

Application Development Guide 

11

Section 3.  POS Printer 

Programming examples of how to use API functions relating to a POS Printer are shown below. 
 

3.1  Printer Stations 
The printer control recognizes the following three types of stations. 
  
Journal .................PTR_S_JOURNAL 
Receipt .................PTR_S_RECEIPT 
Slip      ..................PTR_S_SLIP 
 
The control’s properties that are supported by each individual station may vary, so be sure to 
use the properties that correspond to the station you are using.  Printer methods are passed the 
station names as their first parameter in order to connect to the proper station.  Different printers 
may not have all three stations available, so please check the printer’s properties carefully. 
 

Journal) 
If OPOSPOSPrinter1.CapJrnPresent = True Then 
 ‘Journal functions are available 
Else 
  ‘Journal functions are not available 
End If 
 

Receipt) 
If OPOSPOSPrinter1.CapRecPresent = True Then 
 ‘Receipt functions are available 
Else 
 ‘Receipt functions are not available 
End If 
 

Slip) 
If OPOSPOSPrinter1.CapSlpPresent = True Then 
 ‘Slip functions are available 
Else 
 ‘Slip functions are not available 
End If 
 
 



 
OPOS ADK 

Application Development Guide 

12

3.2  Escape Sequences 
POS Printers support escape sequences that can be treated as printing data.  For a listing of 
escape sequence types, please refer to the “Data Characters and Escape Sequences” section 
of UPOS. 
 
The following is an example of how to use escape sequences. 
 
When data that is being printed is to be underlined, the escape sequence “ESC|uC” is placed 
before the character string to be printed. 
 
Dim Pdata As String 
Pdata = Chr(&H1B) + “|uC” + “Print Data” + Chr(&H0D) + Chr(&H0A) 
 
If the character string in the variable Pdata is printed, the underlined string Print Data is sent to 
the printer.  If the Chr(&H1B)+”|uC” is not put in front of the data, the string will not be underlined 
when printed.  Also, a printer must support the escape sequence for the sequence to be 
performed the way the program specifies.  It is possible for a program to check if a printer has a 
certain  capability by looking at the printer’s properties. 
 
If OPOSPOSPrinter1.CapRecUnderline = True Then 
 ‘Underline printing is supported. 
Else 
  ‘Underline printing is not supported. 
End If 
 
 
Escape sequences are only valid once per method, so escape sequences cannot be used in the 
following manner: 
 

 OPOSPOSPrinter1.PrintNormal PTR_S_JOURNAL,Chr(&H1B)+”|uC”+”123” 
OPOSPOSPrinter1.PrintNormal PTR_S_JOURNAL,”456” + Chr(13) + Chr(10) 

 
An underline will appear below the “123” characters, but not under “456”.  When using a new 
method to print characters, it is necessary to add the desired escape sequence again. 
 
During rotate printing mode (Right90, Left90), the following escape sequences will not work.  
           ”ESC|cA”,”ESC|rA” 
 
The following escape sequences will not work if they are not the first character of a line.  
           Thermal station   ”ESC|cA”,”ESC|rA”,“ESC|#P”,”ESC|rC” 
           Except  Thermal station   “ESC|#P”,”ESC|rC” 
 
The number position shown with # should be replaced by a number from 1 to 4.  Any number 
greater than 4 or less than 1 will not be recognized as an escape sequence. 
 
On printers with escape sequence capabilities it is possible to get information about the 
capabilities from capability properties, and for information about setting parameter numbers on 
machines without capabilities, the ValidateData method can be used.  It is not possible to 
perform these checks after printing has occurred.  When it is necessary to perform an escape 
sequence check before printing, use the ValidateData method. 
 
When setting all printing data using the ValidateData method, it becomes possible to tell if data 
is valid, if escape sequences are correct, and if escape sequence functions are supported. 
 



 
OPOS ADK 

Application Development Guide 

13

Dim Pdata As String 

Dim RC As Long 

Pdata = Chr(&H1B) + “|uC” + ”Print Data”+Chr(13)+Chr(10) 

RC=OPOSPOSPrinter1.ValidateData (PTR_S_RECEIPT, Pdata) 
If RC = OPOS_SUCCESS Then 

 `Pdata is valid 
ElseIf RC = OPOS_E_ILLEGAL Then 

 `parameter is illegal 
ElseIf RC = OPOS_E_FAILURE Then 
 `the capability is not supported 

End If 
 
 

3.3  MapMode Settings 
By changing a printer’s MapMode setting, the height, width, spacing, and other attributes of 
printed data can be changed.  The default setting is dot pitch that depends the printer being 
used. 
Settings can be changed in the following units by using the MapMode property to set new 
values. 
 

Unit Setting Value 
Print dot width PTR_MM_DOT 
1/1440 of an inch PTR_MM_TWIPS
0.001 inch PTR_MM_ENGLI

SH 
0.01 millimeter PTR_MM_METRI

C 
 
For example, in a program like is shown below, the dot pitch default is being used, so the setting 
for D1 is 512.  Next, after using MapMode to change the units to inches and rechecking 
RecLineWidth, D2 becomes 512/Printer Resolution (dpi x 1000).  The actual line width is not 
changed. 
 

Dim D1 As Long 

Dim D2 As Long 

D1=OPOSPOSPrinter1.RecLineWidth 

OPOSPOSPrinter1.MapMode = PTR_MM_ENGLISH 

D2 = OPOSPOSPrinter1.RecLineWidth 
 
 

3.4  Line Information 
Using the properties below, information about printing lines can be obtained and set. 

 
XXXLineChars ........The number of characters that can be printed on a single line can be 

browsed or set. 
XXXLineCharsList...The width of supported characters can be browsed or set. 
XXXLineHeight .......The height of a single line can be obtained. 
XXXLineSpacing.....The space between lines can be browsed or set. 



 
OPOS ADK 

Application Development Guide 

14

XXXLineWidth.........The width of a single line can be obtained. 
 
XXX should be replaced by the desired station name. 
 
The values of the above parameters XXXLineHeight, XXXLineSpacing, and XXXLineWidth are 
changed by the MapMode property.   
 
The XXXLineSpacing property can be set to values from xxxLineHeigh to 127 on thermal 
station. 
The XXXLineSpacing property can be set to values from 0 to 127 on dot station.  
 
The number of characters that can be printed on one line can be set for each station using the 
XXXLineChars property, but stations cannot be set individually.  When one station is set, all 
stations are set to corresponding values.  When a value from the JrnLineCharsList property is 
specified as the value of the JrnLineChars property, the corresponding value in the 
SlpLineCharsList property will be automatically set in the SlpLineChars property, and vice versa. 
For example, if the JrnLineCharsList is 48, 54,… and the SlpLineCharsList property is 62,88,…, 
the first value of the JrnLineChars Property is set (48) JrnLineChars, then the first value of the 
SlpLineChars property is set to (62) automatically. 
 
It is possible to change the speed and quality of a printing by using the XXXLetterQuality 
property. 
 
RecLetterQuality = TRUE  ‘Print in quality mode 
RecLetterQuality = FALSE  ‘Print in speed mode 
SlpLetterQuality = TRUE  ‘Print in quality mode 
SlpLetterQuality = FALSE  ‘Print in speed mode 
 
Default is speed mode. If printing mode is changed to quality mode, printing will be slower, but a 
higher quality. If printing mode is changed back to speed mode, printing becomes faster, but 
lower quality if the station being used is a thermal printer, printing is smoothed automatically. 
 

3.5  Sending Data to the Printer 
The following are explanations of data printing functions. 
 

3.5.1  Synchronous Printing on One Station 
The PrintNormal method is used to send data to the printer. By setting the AsyncMode property 
to FALSE and running the PrintNormal method, data is printed as it is sent and will not release 
control of the printer until the data is completely sent. 
 
The following is an example of a synchronous printing procedure. 
 

OPOSPOSPrinter1.AsyncMode = False 

OPOSPOSPrinter1.PrintNormal PTR_S_JOURNAL, 

   ”Print Data” + Chr(13) + Chr(10) 

If OPOSPOSPrinter1.ResultCode = OPOS_SUCCESS Then 
 ‘Printing was successful. 

ElseIf OPOSPOSPrinter1.ResultCode = OPOS_E_BUSY Then 
  ‘The printer is printing in asynchronous mode. 

ElseIf OPOSPOSPrinter1.ResultCode = OPOS_E_ILLEGAL Then 
 ‘This printing function is not available, etc. 



 
OPOS ADK 

Application Development Guide 

15

ElseIf OPOSPOSPrinter1.ResultCode = OPOS_E_EXTENDED Then 

      If OPOSPOSPrinter1.ResultCodeExtended =  

  OPOS_EPTR_COVER_OPEN Then 
    ‘The cover is open. 

ElseIf OPOSPOSPrinter1.ResultCodeExtended =  

  OPOS_EPTR_JRN_EMPTY Then 
‘No paper. 

End If 

Else 
‘Other error 

End If  
Errors can be determined from the value returned by a method, or can be read from the 
ResultCode property.  Using values returned by a method is shown in the example below. 
 

Dim RC As Long 

OPOSPOSPrinter1.AsyncMode = False 

RC=OPOSPOSPrinter1.PrintNormal (PTR_S_JOURNAL, 

    ”Print Data” + Chr(13) + Chr(10)) 

If RC = OPOS_SUCCESS Then 
 ‘Printing was successful 

ElseIf RC = OPOS_E_BUSY Then 
 ‘The printer is printing in asynchronous mode. 

ElseIf RC = OPOS_E_ILLEGAL Then 
 ‘The function does not exist, etc. 

ElseIf RC = OPOS_E_EXTENDED Then 
 ‘Extended error. 
 Else 
 ‘Other error. 
 End If 
 

3.5.2  Asynchronous Printing on One Station 
Asynchronous output, especially when sending large amounts of data, is more efficient.  
Asynchronous output allows printing to happen in the background and thus has less effect on 
keyboard and mouse operations in a POS application.  By using asynchronous printing, more 
user-friendly POS applications can be built. 

The PrintNormal method is used to send data to the printer.  By setting the AsyncMode property 
to TRUE and running the PrintNormal method, data is printed asynchronously.  Printing data is 
stored in a buffer and control is returned to the application immediately.  After the data has been 
sent to the buffer, an ID for the data is set to the OutputID property.  When the data has finished 
printing, an OutputCompleteEvent is fired to the application.  This event’s identifier is the 
OutputID.  The value of the OutputID property changes with different results, so it can be saved 
and used as needed in an application. 

When asynchronous printing is started, the State property becomes OPOS_S_BUSY.  When 
data has been sent, the State property returns to OPOS_S_IDLE. 

However, after asynchronous printing, the following State monitor loop must not be done in 
order to know whether the output has been completed. 



 
OPOS ADK 

Application Development Guide 

16

While OPOSPOSPrinter1.State = OPOS_S_BUSY 

 DoEvents 

Wend 
 
When an error occurs and ErrorEvent cannot be applied, this kind of loop can become infinite 
loop.  When an error occurs, ErrorEvent can be applied, and State value doesn’t change unless 
retry (default) or clear can be done. 

Errors in asynchronous printing are reported to the application by an ErrorEvent.  The 
ErrorEvent value is placed in the ResultCode parameter and can be used from there.  Extended 
errors such as cover open, out of paper, etc., can be read from this value.  After an error occurs, 
the choice of whether to try again or clear the error can be made by setting the parameter of the 
pErrorResponse to the corresponding value. 

The following are examples of using asynchronous printing in a program. 
 
[Main Program] 
 

Global PrintID1 As Long 

Global PrintID2 As Long 

 

OPOSPOSPrinter1.AsyncMode = True 

OPOSPOSPrinter1.PrintNormal PTR_S_JOURNAL, 

   ”Print Data” + Chr(13) + Chr(10) 

If OPOSPOSPrinter1.ResultCode = OPOS_SUCCESS Then 
 ‘Data was sent successfully. 

PrintID1 = OPOSPOSPrinter1.OutputID 

ElseIf OPOSPOSPrinter1.ResultCode = OPOS_E_ILLEGAL Then 
  ‘The station does not exist. 
 Else 
 ‘Other error. 

End If 

   

If PrintID2 = PrintID1 Then 
 ‘Data was printed successfully. 
End If 
 
[Event Program] 
 
Private Sub OPOSPOSPrinter1_OutputCompleteEvent(ByVal OutputID As Long)  
PrintID2 = OutputID 
End Sub 
 

Private Sub OPOSPOSPrinter1_ErrorEvent(ByVal ResultCode As Long, 

        ByVal ResultCodeExtended As Long, 

        ByVal ErrorLocus As Long, 
pErrorResponse As Long  )  

‘ResultCode is obtained and the error can be dealt with. 
‘Errors such as OPOS_E_TIMEOUT, OPOS_E_BUSY,  



 
OPOS ADK 

Application Development Guide 

17

‘and OPOS_E_OFFLINE are possible results. 
If ResultCode = OPOS_E_EXTENDED Then 

  If ResultCodeExtended = OPOS_EPTR_COVER_OPEN Then 

      ‘Cover Open 

  ElseIf ResultCodeExtended = OPOS_EPTR_JRN_EMPTY 

         Then 

      ‘Paper End 

  End If 

     End If 
pErrorResponse = OPOS_ER_RETRY  ‘When the program should try again 

pErrorResponse = OPOS_ER_CLEAR  ‘When the program should clear the data 
End Sub 
 

3.5.3  Printing on Two Stations at The Same Time 
It is possible to print data on two stations at the same time.  Using the PrintTwoNormal method 
allows concurrent printing.  On a printer with more than one station, the stations can be specified 
with identifiers, and similar or different data can be printed at the same time.  When the 
information is to be similar on both stations, the second parameter of the PrintTwoNormal 
method is the string to be printed, and the third parameter is passed an empty string.  When 
printing different data on the two stations, the data to be printed needs to be put in the second 
and third parameters corresponding to the station names. 
 
When using two stations at one time, please confirm that the printer supports dual printing by 
using the following properties: 
 
When using the Journal and Receipt stations CapConcurrentJrnRec property 
When using the Journal and Slip stations  CapConcurrentJrnSlp property 
When using the Slip and Receipt stations  CapConcurrentRecSlp property 
 
The following is an example of how to use the API to perform concurrent printing on two 
stations.  The JOURNAL station will be sent “Data 2” and the RECEIPT station will be sent “Data 
1”.  If the first parameter of PrintTwoNormal method is PTR_S_JOURNAL_RECEIPT, data from 
the second parameter is printed on the receipt station and data from the third parameter is 
printed on the journal station. Error handling and asynchronous printing control are described in 
the “2.5.1. Synchronous Printing on One Station” and “2.5.2. Asynchronous Printing on One 
Station”. 
 

Dim D1 As String 

Dim D2 As String 

D1 = “Data 1”  

D2 = “Data 2”  

OPOSPOSPrinter1.AsyncMode = False 

OPOSPOSPrinter1.PrintTwoNormal PTR_S_JOURNAL_RECEIPT,D1,D2 
 
If an escape sequence that is not supported by both stations when using PrintTwoNormal 
method (e.g. Paper Cut) is used, the method will not be successful. Right and Center 
justification escape sequence also cannot be used. 
  
To determine synchronous or asynchronous mode, use the AsyncMode property. 



 
OPOS ADK 

Application Development Guide 

18

The length of Data1 and Data2 should be keep within one printed line.  CR and LF characters 
are ignored. 
 

3.5.4  Setting the Logo 
Along with the data sent by the program, it is possible to print a top and bottom logo on the 
printer.  The logo is set by using the SetLogo method.  The method as printing data is used to 
send the logo to the printer by escape sequences (top logo is ESC|tL and bottom logo is 
ESC|bL).  The logo escape sequences are set and transferred in character strings. 
 

Dim D1 As String 

Dim D2 As String 

Dim D3 As String 

D1 = “OPOS 2000” + Chr(13) + Chr(10) 

D2 = “Thank you!!!” + Chr(13) + Chr(10) 

D3 = Chr(&H1B) + ”|tL” + ”Data 1”+ Chr(13) + Chr(10) + 

        Chr(&H1B) + ”|bL” 

OPOSPOSPrinter1.SetLogo PTR_L_TOP,D1 

OPOSPOSPrinter1.SetLogo PTR_L_BOTTOM,D2 

OPOSPOSPrinter1.AsyncMode = False 

OPOSPOSPrinter1.PrintNormal PTR_S_RECEIPT,D3 

 
The printed results of the above program are as follows. 
 

OPOS 2000 

Data 1 

Thank you!!! 
 

3.5.5  Printing Bar Codes 
Bar codes can be printed on a station if the printer supports bar code printing.  To use this 
function, check to see if the printer is able to print bar codes, and if so send the data. 
 

If OPOSPOSPrinter1.CapRecBarCode = True Then 
 ‘Bar codes can be printed. 
 Else 
  ‘Bar codes cannot be printed. 
 End If 

 
It is possible to decide whether to print bar codes rotated or not before the PrintBarCode method 
is used.  Some printers support 90-degree right, 90-degree left, and 180-degree rotated printing, 
but it is necessary to check the printer being used by using the RecBarCodeRotationList 
(SlpBarCodeRotationList) property.  The supported rotation degree numbers will be seen in a 
string there.  If the desired rotation is available, it can then be set in the RotateSpecial property. 
 
By using the following example, 180-degree rotated bar code printing can be performed. 
 

If InStr(OPOSPOSPrinter1.RecBarCodeRotationList, “180”) Then 

  OPOSPOSPrinter1.RotateSpecial = PTR_RP_ROTATE180 



 
OPOS ADK 

Application Development Guide 

19

The following is an example of setting the parameters needed to use the PrintBarCode method. 
 
Dim RC As Long 
RC = OPOSPOSPrinter1.PrintBarCode (PTR_S_RECEIPT,  ‘The Slip or Receipt station can be 
specified. 
“495462406082”,  ‘A bar code number. 
PTR_BCS_UPCA, ‘Bar code symbol type. 
100,   ‘Bar code height.  
150,   ‘Bar code width. 
PTR_BC_CENTER, ‘Position of bar code. 
PTR_BC_TEXT_ BELOW‘Position of bar code text. 
If RC = OPOS_E_BUSY Then 
 ‘Data is being sent. 
ElseIf RC = OPOS_E_ILLEGAL Then 
  ‘There is a problem with the parameters, etc. 
ElseIf RC = OPOS_E_EXTENDED Then ‘Extended error 
 If OPOSPOSPrinter1.ResultCodeExtended = OPOS_EPTR_COVER_OPEN Then 
  ‘Cover is open. 
 ElseIf OPOSPOSPrinter1.ResultCodeExtended = OPOS_EPTR_REC_EMPTY Then 
  ‘Paper out. 
 End If 
End If 
 
For detailed explanations of the parameters and their legal values, please refer to UPOS. When 
printing bar codes and specifying the bar code symbol type, other parameters are affected.  
Supported symbol types may vary depending on the printer device being used, so it is 
recommended that further information be obtained from either the “Device Specific 
Programming” section or the device’s product manual. 
 
The PrintBarCode method can use both synchronous and asynchronous printing functions by 
setting the appropriate AsyncMode property. 
 
It is possible to print wide bar codes using 90-degree rotated printing.  Use this function when 
ever necessary. 
 
Error handling and asynchronous printing control are described in the “2.5.1. Synchronous 
Printing on One Station” and “2.5.2. Asynchronous Printing on One Station”. 
 

3.5.6  Bitmap Printing 
Bitmaps can be printed on a station that supports bitmap printing.  To use this function, check to 
see if the printer is able to print bitmaps, and if so send the data. 
 
If OPOSPOSPrinter1.CapRecBitmap = True Then 
 ‘Bitmaps can be printed. 
Else 
  ‘Bitmaps cannot be printed. 
End If 
 
It is possible to change the speed and quality of a bitmap by using the XXXLetterQuality 
property. 
 
RecLetterQuality = TRUE  ‘print Receipt’s bitmap in quality mode 
RecLetterQuality = FALSE  ‘print Receipt’s bitmap in speed mode 
SlpLetterQuality = TRUE  ‘print Slip’s bitmap in quality mode 
SlpLetterQuality = FALSE  ‘print Slip’s bitmap in speed mode 



 
OPOS ADK 

Application Development Guide 

20

 
The default is speed mode. If bitmap printing mode is changed to quality mode, bitmap printing 
is slower, but at a higher quality. If bitmap printing mode is changed to speed mode, bitmap 
printing becomes faster, but lower quality If the station is a dot printer, density will be single no 
matter which mode is set. If the station is a thermal printer, the density is as follows. (When the 
letter quality is set to 180dpi.) 
 

Mode Density 
Speed 60 x 90 dpi, 90 x 90 dpi (When down 

load) 
Quality 180 x 180 dpi 

 
There are two ways of printing a bitmap.  One way is by using the PrintBitmap method to directly 
print the bitmap. 
 
The following is an example of setting the parameters needed to use the PrintBitmap method. 
 
Dim RC As Long 
RC = OPOSPOSPrinter1.PrintBitmap (PTR_S_RECEIPT, ‘The Slip or Receipt station to 
be used. 
“Bitmap.BMP”,  ‘The .BMP file to be printed. 
PTR_BM_ASIS,  ‘Bitmap width. 
PTR_BM_CENTER) ‘Bitmap alignment. 
If RC = OPOS_E_BUSY Then 
 ‘Data is being sent 
ElseIf RC = OPOS_E_ILLEGAL Then 
 ‘There is a problem with the parameters, etc. 
ElseIf RC = OPOS_E_NOEXIST Then 
 ‘The specified file does not exist. 
ElseIf RC = OPOS_E_EXTENDED Then 
  If OPOSPOSPrinter1.ResultCodeExtended = OPOS_EPTR_TOOBIG Then 
  ‘Bitmap image is too large. 
 ElseIf OPOSPOSPrinter1.ResultCodeExtended = OPOS_EPTR_BADFORMAT Then 
  ‘The format is incorrect. 
 ElseIf OPOSPOSPrinter1.ResultCodeExtended = OPOS_EPTR_COVER_OPEN Then 
  ‘Cover is open. 
 ElseIf OPOSPOSPrinter1.ResultCodeExtended = OPOS_EPTR_REC_EMPTY Then 
  ‘Paper out. 
 End If 
End If 
 
For detailed explanations of the parameters and their legal values, please refer to UPOS. 
 
The PrintBitmap method can use both synchronous and asynchronous printing functions by 
setting the AsyncMode property. 
 
Error handling and asynchronous printing control are described in the “2.5.1. Synchronous 
Printing on One Station” and “2.5.2. Asynchronous Printing on One Station”.  Errors relating to 
bitmaps are OPOS_EPTR_TOOBIG and OPOS_EPTR_BADFORMAT. 
 
Another way to print a bitmap is to use escape sequences.  The SetBitmap method can be used 
to define the bitmap. 

 
There are two ways of printing bitmaps by using escape sequences.  The first is to use the 
printer's download bitmap image function.  This is called the download bitmap printing mode.  
The SetBitmap method can be used to save a bitmap on the printer, and every time the correct 



 
OPOS ADK 

Application Development Guide 

21

escape sequence is used, the image will be printed.  The first BitmapNumber parameter is used 
for this.  This method has limits on the size of the bitmap that can be stored, but printing is very 
fast. 
The second way is to send the bitmap to the printer with escape sequences each time it is to be 
printed.  This allows any bitmap to be printed up to the size of the paper being used, but printing 
is slower than the first method.   
 
The size of the bitmap that is stored is limited by the hardware being used (please refer to the 
bitmap printing command section of the each printer’s product manual), and only one bitmap 
can be stored at one time (BitmapNumber parameter of the SetBitmap method is set to 1).  
Printing with this method, however, is much faster.  
 
The second way is not using printer download image function. Using this way, the bitmap size 
can be changed to any size up to the width of the paper being used, but printing is slow.  This 
method can be chosen by setting the BitmapNumber parameter of the SetBitmap method to 2.  
Either of the bitmap printing methods specified above can be set by using the DirectIO method. 
Please consult the class’ device manual DirectIO method setting section. 
 
The following is an example of setting the parameters needed to use the SetBitmap method. 
 
Dim RC As Long 
RC = OPOSPOSPrinter1.SetBitmap (1,  ‘Bitmap number. 

 PTR_S_RECEIPT, ‘The Slip or Receipt station can be specified. 
 “Bitmap.BMP”, ‘The .BMP file to be printed. 
PTR_BM_ASIS, ‘Bitmap width. 
PTR_BM_CENTER) ‘Bitmap alignment. 
If RC = OPOS_E_ILLEGAL Then 
 ‘There is a problem with the parameters, etc. 
ElseIf RC = OPOS_E_NOEXIST Then 
 ‘The specified file does not exist. 
ElseIf RC = OPOS_E_EXTENDED Then 
 If OPOSPOSPrinter1.ResultCodeExtended = OPOS_EPTR_TOOBIG Then 
  ‘Bitmap image is too large. 
 ElseIf OPOSPOSPrinter1.ResultCodeExtended = OPOS_EPTR_BADFORMAT Then 
  ‘The format is incorrect. 
 ElseIf OPOSPOSPrinter1.ResultCodeExtended = OPOS_EPTR_COVER_OPEN Then 
  ‘Cover is open. 

ElseIf OPOSPOSPrinter1.ResultCodeExtended = OPOS_EPTR_REC_EMPTY Then 

‘Paper is out 
  End If 
End If 
 
For detailed explanations of the parameters and their legal values, please refer to UPOS. 
 
Next, the PrintNormal or PrintImmediate method is used with PrintBitmap’s escape sequence 
that holds the bitmap’s data as a parameter.  The escape sequence code is “ESC|nB”.  n is the 
number of the bitmap specified in the SetBitmap method.  It is possible to record up to two 
bitmaps at one time. By using bitmap numbers, numerous bitmaps can be recorded and printed. 
n must be a 1 column integer. 
 
OPOSPOSPrinter1.AsyncMode = False 
OPOSPOSPrinter1.PrintNormal PTR_S_RECEIPT, Chr(&H1B) + “|1B” 
 
When using the PrintNormal method, it is possible to print bitmap picture rotated to 90-degree or 
180-degree. 



 
OPOS ADK 

Application Development Guide 

22

 
Printing will not occur when printing to a station other than the station specified in the SetBitmap 
method. 
 

3.5.7  Rotated Printing 
Printed data can be turned 90-degree or 180-degree. To use this function, check to see if the 
printer is able to rotate printing, and if so send the data. 
 
[90-degree Right Printing] 
If OPOSPOSPrinter1.CapRecRight90 = True Then 
 ‘90-degree right printing is possible. 
Else 
 ‘90-degree right printing is not possible. 
End If 
 
[90-degree Left Printing] 
If OPOSPOSPrinter1.CapRecLeft90 = True Then 
 ‘90-degree left printing is possible. 
Else 
 ‘90-degree left printing is not possible. 
End If 
 
[180-degree printing] 
If OPOSPOSPrinter1.CapRecRotate180 = True Then 
 ‘180-degree printing is possible. 
Else 
 ‘180-degree printing is not possible. 
End If 
 
The following is an example of setting the parameters needed to use the RotatePrint method. 
 
By setting the rotate printing mode, rotated printing can be performed by using the PrintNormal 
or PrintImmediate methods. (90-degree rotated printing can be performed by using PrintNormal 
only.) 
 
Dim RC As Long 
RC = OPOSPOSPrinter1.RotatePrint (PTR_S_RECEIPT, PTR_RP_RIGHT90) 
If RC = OPOS_SUCCESS Then 

OPOSPOSPrinter1.PrintNormal PTR_S_RECEIPT, “Right 90 Printing.”+ Chr(13)+ Chr(10) 

+ ”AAAAA” + Chr(13) + Chr(10) +“BBBBB” + Chr(13) + Chr(10) 
RC = OPOSPOSPrinter1.RotatePrint (PTR_S_RECEIPT, PTR_RP_NORMAL) 

If RC = OPOS_E_BUSY Then 
  ‘Data is being sent 

ElseIf RC = OPOS_E_ILLEGAL Then 
  ‘Specified station does not exist 

ElseIf RC = OPOS_E_EXTENDED Then 
 If OPOSPOSPrinter1.ResultCodeExtended = OPOS_EPTR_COVER_OPEN Then 

   ‘Cover is open. 
ElseIf OPOSPOSPrinter1.ResultCodeExtended = OPOS_EPTR_REC_EMPTY Then 

   ‘Paper out. 
  End If 
End If 
Else 
 ‘Error 
End If 



 
OPOS ADK 

Application Development Guide 

23

 
After 90-degree rotated printing has been specified by the RotatePrint method, all print data is 
buffered.  By changing the rotation parameter of the RotatePrint method or executing 
TransactionPrint method, all buffered data is printed based on the before rotation parameter. 
 
When using 90-degree rotated printing, there are limits on the possible number of lines and 
columns.  These limits can be obtained by checking the XXXSidewaysMaxChars and 
XXXSidewaysMaxLines properties.  (XXX should be replaced by Rec or Slp.)  When the number 
specified by MaxLine is passed, data will be discarded. 
 

3.5.8  Immediate Printing 
Immediate Printing is the ability to move data to the top of the priority list.  Data can even be 
sent and printed before other data that has been sent in asynchronous mode.  The 
PrintImmediate method is used to accomplish this. 
 
For example, if the LineFeed(&H0A) command is sent while asynchronous data is being sent, a 
line feed will occur in the middle of the data that is currently being printed.  When the immediate 
data has finished, the normal data will continue printing. 
 
Dim RC As Long 
RC = OPOSPOSPrinter1.PrintImmediate (PTR_S_JOURNAL,Chr(13)+Chr(10)) 
If RC = OPOS_SUCCESS Then 
 ‘Data printed successfully. 
ElseIf RC = OPOS_E_ILLEGAL Then 
 ‘Specified station does not exist, etc. 
ElseIf RC = OPOS_E_EXTENDED Then ‘Extended error. 
 If OPOSPOSPrinter1.ResultCodeExtended = OPOS_EPTR_COVER_OPEN Then 
  ‘Cover is open. 
 ElseIf OPOSPOSPrinter1.ResultCodeExtended = OPOS_EPTR_JRN_EMPTY Then 
  ‘Paper out. 
 End If 
End If 
 

3.5.9  Collective Printing 
Collective printing mode can be set by using the TransactionPrint method.  When this function is 
used, be sure to confirm that the printer supports collective printing by checking its properties. 
 
If OPOSPOSPrinter1.CapTransaction = True Then 

`collective printing is possible 
Else 

`collective printing is not possible 
End If 
 
All print data specified by the PrintNormal method for collective printing is buffered.  It is not 
possible to print with any other method than PrintNormal.  The AsyncMode property also 
becomes unusable when the PrintNormal method is used for collective printing.  The following is 
a programming example of collective printing. 
 
Dim RC As Long 
RC=OPOSPOSPrinter1.TransactionPrint (PTR_S_RECEIPT, PTR_TP_TRANSACTION) 
If RC = OPOS_SUCESS Then 
 OPOSPOSPrinter1.PrintNormal PTR_S_RECEIPT, ” Print Data 1” + Chr(13) + Chr(10) 

OPOSPOSPrinter1.PrintNormal PTR_S_RECEIPT, ”Print Data 2” + Chr(13) + Chr(10) 
 OPOSPOSPrinter1.PrintNormal PTR_S_RECEIPT, ”Print Data 3” + Chr(13) + Chr(10) 
 OPOSPOSPrinter1.PrintNormal PTR_S_RECEIPT, ”Print Data 4” + Chr(13) + Chr(10) 



 
OPOS ADK 

Application Development Guide 

24

 `nothing is printed up to this point 
 OPOSPOSPrinter1.AsyncMode = True ‘synchronous or asynchronous mode is chosen 
here 
 RC=OPOSPOSPrinter1.TransactionPrint(PTR_S_RECEIPT, PTR_TP_NORMAL) 
 If RC = OPOS_SUCESS Then 
  ` printing was successful 
 ElseIf RC = OPOS_E_BUSY Then 
  ` data is still being sent 
 ElseIf RC = OPOS_E_EXTENDED Then 
  If OPOSPOSPrinter1.ResultCodeExtended = OPOS_EPTR_COVER_OPEN Then 
   ‘cover is open 
  ElseIf OPOSPOSPrinter1.ResultCodeExtended = OPOS_EPTR_REC_EMPTY 
Then 
   ‘out of paper 
  End If 
 End If 
ElseIf RC = OPOS_E_ILLEGAL Then 
 `the specified station does not exist or collective printing is not supported 
End If 
 

3.6  Form Insertion/Removal and Slip Printing 
When using the Slip station, methods can be used to insert and remove forms. 
 
The BeginInsertion method makes the station ready to receive a form. If a form is inserted within 
the set time interval, the method returns OPOS_SUCCESS. If a form has been inserted in the 
station, the EndInsertion method locks the form in place (closes the jaws) making it ready for 
printing. If the station is waiting to receive a form, the EndInsertion method cancels the ready 
state of the station. 
 
To remove a form, the BeginRemoval method can be used to release the jaws and eject the 
paper.  The EndRemoval method can be used to cancel the closed state of the station. 
 
If there is no roll paper, an error will be returned when a form is inserted or removed, because 
there may be a paper jam in the printer.  If an error occurs, please check the roll paper. 
 
To insert a form: 
 
Dim RC As Long 
RC = OPOSPOSPrinter1.BeginInsertion (5000) 
If RC = OPOS_SUCCESS Then 
OPOSPOSPrinter1.EndInsertion 
  ‘Slip is ready to be printed on. 
ElseIf RC = OPOS_E_TIMEOUT Then 
‘Slip has not been inserted in a setting time 
 Else 
  ‘Other error 
End If 
 
Printing can occur on the slip station after BeginInsertion and EndInsertion method have been 
executed. 
 
OPOSPOSPrinter1.PrintNormal PTR_S_SLIP, ”Print Slip Station” + Chr(13) + Chr(10) 
 
To remove a form: 
 



 
OPOS ADK 

Application Development Guide 

25

Dim RC As Long 
RC = OPOSPOSPrinter1.BeginRemoval (5000) 
If RC = OPOS_SUCCESS Then 
  RC=OPOSPOSPrinter1.EndRemoval 
ElseIf RC = OPOS_E_TIMEOUT Then 
  ‘Paper is still in the station 
Else 
  ‘Other error 
End If 
 
Immediately after asynchronous data has been sent, it is possible that the BeginRemoval 
method will return an OPOS_E_BUSY error. It is suggested that programs wait until the 
OPOS_E_BUSY error is cleared. This can be done by checking the OutputID or FlagWhenIdle 
properties after asynchronous data has been sent. 
 
Also, while a station is printing, it is not possible to remove the paper, so a timeout will occur if 
the BeginRemoval method is used before printing is finished. Be sure to only use the 
BeginRemoval method after the printer is finished printing.  
 
If BeginRemoval is used to remove paper from the printer, OPOS_SUCCESS will not be 
returned until the paper is completely removed from the station. Paper is not completely 
removed while the slip LED is flashing. It is usually necessary to remove paper by hand. 
 
 

3.7  Paper Cutting 
Paper can be cut by using the automatic cutter on the Receipt station. To use this function, 
check to see if the printer is able to perform automatic cuts, and if so instruct it to do so. 
 
If OPOSPOSPrinter1.CapRecPapercut = True Then 
 ‘The printer has a paper cutter. 
Else 
 ‘The printer does not have a paper cutter. 
End If 
 
There are two ways to perform a paper cut.  One way is by using the CutPaper method to 
directly cut the receipt. 
 
The percentage of paper to cut can be set with the CutPaper method.  The exact cut percentage 
that can be passed by paper cutting is as follows. 
 
0%        No cut. 
70%      All but three points will be cut.   
90%      All but one point will be cut. 
100%     Full cut.  If full cut is not possible, all but one point will be cut. 
 
0 to 100 percentage values other than the above is handled as follows.  
 
0         Nothing cut 
1-79    All but three points will be cut.  If this cut is not possible, all but one point will be cut. 
80-99   All but one point will be cut. 
100     Full cut.  If full cut is not possible, all but one point will be cut. 
100<    Error 
 
Any other percentage used when data is checked with ValidateData method will cause an 
OPOS_E_ILLEGAL error to be returned. 



 
OPOS ADK 

Application Development Guide 

26

 
Cutting ability varies by printer.  For detailed information, please refer to UPOS and Device 
Specific Programming manuals. 
 
OPOSPOSPrinter1.CutPaper 100 ‘Full Cut. 
If OPOSPOSPrinter1.ResultCode = OPOS_SUCCESS Then 
 ‘ OK 
Else 
 ‘ NG 
End If 
 
The CutPaper method can use both synchronous and asynchronous printing functions by setting 
the appropriate AsyncMode property. 
 
Error handling and asynchronous printing control are described in the “2.5.1. Synchronous 
Printing on One Station” and “2.5.2. Asynchronous Printing on One Station”. 
 
Another way to perform a paper cut is by using an escape sequence.  The PrintNormal and 
PrintImmediate methods can pass the paper cut escape sequence to the printer as a parameter.  
The paper cut escape sequence is ESC|nP, where n is the percentage of paper to cut.  n can be 
given a number from 0 to 100 that is passed as a character string. Specified percentage is 
treated the same as by the CutPaper method, but if a value of more than 100 is set or no value 
is specified, it will default to100.  
 
OPOSPOSPrinter1.AsyncMode = False 
OPOSPOSPrinter1.PrintNormal PTR_S_RECEIPT, Chr(&H1B) + “|100P” 
 
When using a printer’s paper cut function, please refer to the RecLineToPaperCut property in 
order to advance the paper far enough before it is cut. By using the “ESC|#fP” escape 
sequence, paper can be cut after being advanced the number of lines specified without using 
the RecLineToPaperCut property. 
 
While there is still output data in the printer buffer and the CutPaper method is used, the paper 
will be cut after all data in the buffer has been printed, but if an escape sequence is used to cut 
the paper, nothing will happen.  
 
Printers without cutter capabilities will return OPOS_E_FAILURE. 
 



 
OPOS ADK 

Application Development Guide 

27

3.8  Checking the Printer State 
The state of the printer can be checked through properties supported by the printer.  For 
example, if the user wants to check if the printer cover is open, the CoverOpen property can be 
used. 
 
If OPOSPOSPrinter1.CoverOpen = True Then 
 MsgBox “Cover is open!” 
End If 
 
This and many other events can also be checked by firing a StatusUpdateEvent. 
 
[Event management] 
 
Private Sub OPOSPOSPrinter1_StatusUpdateEvent (ByVal Data As Long) 
If Data = PTR_SUE_COVER_OPEN Then 
  MsgBox “Cover is open!” 
 End If 
End Sub 
 
StatusUpdateEvent can return information on the following items. 
 

          STATUS           INFORMATION 
PTR_SUE_COVER_OPEN Cover is open. 
PTR_SUE_COVER_OK Cover is closed. 
PTR_SUE_JRN_EMPTY Journal paper is out. 
PTR_SUE_JRN_NEAREMPTY Journal paper is near the end. 
PTR_SUE_JRN_PAPEROK Journal paper is OK. 
PTR_SUE_JRN_CARTRIDGE_EMPTY Journal cartridge is out. 
PTR_SUE_JRN_CARTRIDGE_NEAREMP
TY 

Journal cartridge is near the end. 

PTR_SUE_JRN_HEAD_CLEANING Journal cartridge starts cleaning 
PTR_SUE_JRN_CARTRIDGE_OK Journal cartridge is OK. 
PTR_SUE_REC_EMPTY Receipt paper is out. 
PTR_SUE_REC_NEAREMPTY Receipt paper is near the end. 
PTR_SUE_REC_PAPEROK Receipt paper is OK. 
PTR_SUE_REC_CARTRIDGE_EMPTY Receipt cartridge is out. 
PTR_SUE_REC_CARTRIDGE_NEAREMP
TY 

Receipt cartridge is near the end. 

PTR_SUE_REC_HEAD_CLEANING Receipt cartridge starts cleaning. 
PTR_SUE_REC_CARTRIDGE_OK Receipt cartridge is OK. 
PTR_SUE_SLP_EMPTY Slip paper is out. 
PTR_SUE_SLP_NEAREMPTY Slip paper is near the end. 
PTR_SUE_SLP_PAPEROK Slip paper is OK. 
PTR_SUE_SLP_CARTRIDGE_EMPTY Slip cartridge is out. 
PTR_SUE_SLP_CARTRIDGE_NEAREMP
TY 

Slip cartridge is near the end. 

PTR_SUE_SLP_HEAD_CLEANING Slip cartridge starts cleaning. 
PTR_SUE_SLP_CARTRIDGE_OK Slip cartridge is OK. 
PTR_SUE_IDLE Printer State is idle. 

 
When the FlagWhenIdle property is set to TRUE, PTR_SUE_IDLE is sent to inform the 
application that the printer is idle.  Other than when data is being sent, the printer is in an idle 
state, so if FlagWhenIdle is TRUE, an event will be fired when printing is finished.  After the 



 
OPOS ADK 

Application Development Guide 

28

event is fired, FlagWhenIdle will be set to FALSE.  By using this value, the information below 
can be found out. 
 
*Finding out when multiple asynchronous print jobs have finished printing. 
When multiple asynchronous print jobs have been sent to the printer, it is possible to know when 
they have finished printing.  After setting the AsyncMode property to TRUE and running the 
PrintNormal method, change the FlagWhenIdle property to TRUE.  When all data has finished 
printing, the printer becomes idle and a StatusUpdateEvent is fired to the application with the 
value of PTR_SUE_IDLE. 
 

3.9  Printer Errors and Status 
A change in printer status when asynchronous data is being sent is made available to the 
program by the firing of an ErrorEvent and StatusUpdateEvent.  When the printer changes 
status while nothing is happening, the change is told to the program by a StatusUpdateEvent 
only. 
 
As an example, assume that the printer cover becomes open.  Usually, when data is not being 
sent to the printer and the cover is opened, a StatusUpdateEvent is fired to the application.  
After the AsyncMode property is set to TRUE and a method is used to print data, if the cover is 
opened while the data is being sent, the program is notified by an ErrorEvent.  ErrorEvent are 
fired when the error has interrupted the data that is being sent.  Only StatusUpdateEvent will fire 
when the error does not affect the data and the data will continue being sent as normal. 
 
Reasons for the ErrorEvent being fired and the corresponding error names are listed below. 
  

ResultCode/ ResultCodeExtended Reason 
OPOS_E_ILLEGAL There is an abnormality with the device. (Includes 

the following 1 error) 
OPOS_EX_INVALIDMODE During slip printing mode, printed to another 

station  
OPOS_E_EXTENDED Error determined by the device’s SO (Includes the 

following 4 errors) 
OPOS_EPTR_COVER_OPEN Cover is open. 
OPOS_EPTR_JRN_EMPTY Journal paper is empty. 
OPOS_EPTR_REC_EMPTY Receipt paper is empty. 
OPOS_EPTR_SLP_EMPTY There is no form in the slip station. 
OPOS_E_FAILURE Hard error (Includes the following 6 errors). 
OPOS_EPTR_UNRECOVERABL
E 

Error that cannot be recovered form. 

OPOS_EPTR_CUTTER Error with the automatic cutter. 
OPOS_EPTR_MECHANICAL Mechanical error. 
OPOS_EPTR_OVERHEAT Head overheat error. 
OPOS_EX_MICRMODE In MICR mode error. 
OPOS_EX_DEVBUSY Device busy error. 
OPOS_EPTR_JRN_CARTRIDGE
_REMOVED 

Journal cartridge is removed. 

OPOS_EPTR_JRN_CARTRIDGE
_EMPTY 

Journal cartridge is empty. 

OPOS_EPTR_JRN_HEAD_CLEA
NING 

Journal head starts cleaning. 

OPOS_EPTR_REC_CARTRIDGE
_REMOVED 

Receipt cartridge is removed. 

OPOS_EPTR_REC_CARTRIDGE
_EMPTY 

Receipt cartridge is empty. 



 
OPOS ADK 

Application Development Guide 

29

OPOS_EPTR_REC_HEAD_CLEA
NING 

Receipt head starts cleaning. 

OPOS_EPTR_SLP_CARTRIDGE
_REMOVED 

Slip cartridge is removed. 

OPOS_EPTR_SLP_CARTRIDGE
_EMPTY 

Slip cartridge is empty. 

OPOS_EPTR_SLP_HEAD_CLEA
NING 

Slip head starts cleaning. 

 
After an error occurs, detailed information about the error can be obtained from the ErrorLevel, 
ErrorStation, and ErrorString properties. 
 
 

3.10  Clearing the Output Buffer 
Data that is currently being output is not affected when the ClearOutput method is used. 
 
For example, when the following data has been buffered, 
 

Output Data 1 OutputID=1  Being sent 
now 

Output Data 2 OutputID=2 
Output Data 3 OutputID=3 
Output Data 4 OutputID=4 

 
the data in “Output Data 1” will all be printed.  All the data in Output Data 2, Output Data 3, and 
Output Data 4 will be cleared.  After the data is cleared, an OutputCompleteEvent will not be 
fired to the application. 
 
 

3.11  Testing with the CheckHealth Method 
Printers support the CheckHealth method’s Level 1, 2 and 3 setting. The tests can be used to 
ensure the correct connection of the device. For more details, please refer to the "EPSON OPOS 
ADK MANUAL APPLICATION DEVELOPMENT GUIDE POSPrinter (TM Series)". 
 
 
3.12  Cartridge State 
From the UPOS Release 1.5, the methods and the properties to confirm the cartridge state have 
been added. For those printers that have the cartridge sensor can confirm the cartridge state by 
events. First, confirm whether a printer has the cartridge sensor or not using the 
CapXxxCartridgeSensor property. Then specify the cartridge to be used, and confirm the status of 
the cartridge. When setting the CartridgeNotify to ENABLE, the cartridge state will be notified by 
the event.  
 

[Main Management] 

If OPOSPOSPrinter1.CapJrnCartridgeSensor = True Then ‘Journal Cartridge exists 

 If OPOSPOSPrinter1.CapJrnColor And PTR_COLOR_CUSTOM1 = True then 

‘Secondary color selection 

OPOSPOSPrinter1.DeviceEnable = TRUE 

OPOSPOSPrinter1.CartridgeNotify =  PTR_CN_DISABLED 



 
OPOS ADK 

Application Development Guide 

30

  OPOSPOSPrinter1.JrnCurrentCartridge = PTR_COLOR_CUSTOM1 

  If OPOSPOSPrinter1. JrnCartridgeState = PTR_CART_REMOVED then 

‘Cartridge is removed. 

  Elseif OPOSPOSPrinter1. JrnCartridgeState = PTR_CART_CLEANING then 

‘Cartridge is in cleaning 

  Elseif OPOSPOSPrinter1. JrnCartridgeState = PTR_CART_NEAREND then 

‘Cartridge is near the end 

  Else 

‘Other errors 

  End If 

 End If 

End If 

 

    [Event Management] 

Private Sub OPOSPOSPrinter1_StatusUpdateEvent(ByVal Data As Long) 

 If Data = OPOS_EPTR_JRN_CARTRIDGE_REMOVED Then 

  OPOSPOSPrinter1.JrnCurrentCartridge = PTR_COLOR_CUSTOM1 

  If OPOSPOSPrinter1. JrnCartridgeState =  PTR_CART_REMOVED then 

‘Cartridge is removed. 

  End If 

     End If 

End Sub 

 
 
3.13  Color Printing 
From the UPOS Release 1.5, the methods and the properties for color printing have been added. 
As referring to the CapXxxColor property, supported colors can be confirmed. After confirming the 
available colors, color printing can be done using ESC |#rC or ESC |rC.   

Dim Color As String 

If OPOSPOSPrinter1.CapJrnColor And PTR_COLOR_CUSTOM1 = True then ‘Secondary 

color selection 

OPOSPOSPrinter1.AsyncMode = False 

 Color = CStr iPTR_COLOR_CUSTOM1 j 

 OPOSPOSPrinter1.PrintNormal PTR_S_JOURNAL,Chr(&H1B) + ”|” + Color + “rC” + 

“Color Custom1” 

End If 
 
 
3.14  Mark Sensed Paper Support 
From the UPOS Release 1.5, the method for the mark sensed receipt paper has been added. To 



 
OPOS ADK 

Application Development Guide 

31

confirm whether the available device or not, please refer to the CapRecMarkFeed property.  The 
various kinds of mark sensed paper feedings are done by the MarkFeed method. 
 
 
3.15  Printing on Both Sides 

From the UPOS Release 1.5, the function for printing on both sides has been added.  To 
confirm whether the available device or not, please refer to the CapSlpBothSidePrint property. 
The printing side can be changed by the ChangePrintSide method. The changed value is in the 
SlpPrintSide property. 

If OPOSPOSPrinter1.CapSlpBothSidePrint = True  Then ‘The printer can print on both 

sides 

 If OPOSPOSPrinter1. SlpPrintSide = PTR_PS_SIDE2 then ‘The reverse side 

OPOSPOSPrinter1. ChangePrintSide PTR_PS_SIDE1 

End If 

 OPOSPOSPrinter1.PrintNormal PTR_S_SLIP C”Default Print Side”+Chr(13) + Chr(10) 

OPOSPOSPrinter1. ChangePrintSide PTR_PS_SIDE2 

 OPOSPOSPrinter1.PrintNormal PTR_S_SLIP C”Reverse Side of Default Side” 

+Chr(13) + Chr(10) 

End If 
 
3.16  Things to Consider when Using Properties 
 

There are times when a command will be sent to the printer when a property is set.  When the 
printer is not able to accept commands (printer is busy, etc), properties will not be able to be set, 
and an error will be returned. 
 
There are some properties that cannot be set while data is being buffered for 90-degree rotated 
printing.  An error will be returned in this case. 
 
Properties that send commands to the printer cannot be set while the printer is printing in 
asynchronous mode. 
 



 
OPOS ADK 

Application Development Guide 

32

Section 4.  Line Display 

Programming examples of how to use API functions relating to a Line Display are shown below. 
 

4.1  Window Creation/Destruction 
In the line display window, there is a physical field that shows in the display area, and a logical 
field that extends beyond the physical field to allow updating and character movement.  All 
windows on the display are made up of these two fields, and by default the physical field is 
always contained within the logical field.  The logical field may be larger than the physical field in 
either the horizontal or the vertical direction. It is not possible to create a physical field window 
that is larger than the logical field window. The logical and physical fields can be set to the same 
size. 
 
The following are examples of the three types of windows that are possible. 
 
A window where the logical field is longer horizontally than the physical field: 
 
(0.0)    (0.13) 

Logical
FieldPhysical Field

 
(1.10)  (1.13) 
 

WINDOW 
Physical Field: (0.0) - (1.10) 
Logical Field: (0.0) - (1.13) 

 
A window where the logical field is longer horizontally than the physical field: 

(0.0)        (0.10) 

Logical Field

Physical Field

 (1,10)

 
(5.10) 

WINDOW 
Physical Field: (0.0) - (1.10) 

Logical Field: (0.0) - (5.10) 



 
OPOS ADK 

Application Development Guide 

33

A window where the logical and physical fields are the same: 
 
(0.0)           (0.10) 

Physical /Logical Field

 
      (1,10) 

WINDOW 
Physical Field: (0.0) - (1.10) 
Logical Field: (0.0) - (1.10) 

 
A window is created by using the CreateWindow method.  Until the CreateWindow method is 
used, window 0 is used as the current window.  The physical field and logical field of window 0 
are initially the same size, and fill the maximum possible area that the display settings allow.  
The field’s sizes vary depending on the type of display that is being used, and are made 
available to the program by the DeviceRows and DeviceColumns properties. 
 
In addition to the default window, any other logical windows can be created. 
 
The following is the code necessary to create the window. 
 
Dim RC As Long 
Dim Wno As Long 
RC = OPOSLineDisplay1.CreateWindow (0,0,2,11,2,14) ‘Window dimensions. 
Wno = OPOSLineDisplay1.CurrentWindow   ‘The window that is now 
displayed. 
If RC <> OPOS_SUCCESS Then 
 ‘Error 
Else 
 ‘OK 
End If 
 
When a window is created, the new window is automatically set as the current window.  After 
creating a new window and obtaining the window number from the CurrentWindow property, the 
number can be used to return to the window after changing to a different window.  By setting the 
CurrentWindow property, the window that is shown on the display can be easily changed. 
 
Dim Wno1 As Long 
Dim Wno2 As Long 
OPOSLineDisplay1.CreateWindow 0,0,2,11,2,14 
Wno1 = OPOSLineDisplay1.CurrentWindow 
OPOSLineDisplay1.CreateWindow 0,0,1,20,1,20 
Wno2 = OPOSLineDisplay1.CurrentWindow 
OPOSLineDisplay1.CurrentWindow = Wno1 
 
In the above program, the CurrentWindow property is changed after creating the second 
window, making the first window the current window. 
 
When there is no longer a need for a window, the window can be destroyed by using the 
DestroyWindow method.  The current window is destroyed and the CurrentWindow property is 
reset to the default Window 0.  Window 0 cannot be destroyed. 



 
OPOS ADK 

Application Development Guide 

34

4.2  Window Rows/Columns 
The number of rows and columns in the current window can be obtained from the Rows and 
Columns properties.  These properties are determined by the parameters set when the window 
was created.  Window 0 rows and columns are determined by the type of display. (This is same 
value at the DeviceRows and DeviceColumns property.) 
 
 

4.3  Showing Data on the Display 
There are two ways to show data on a display.  One way is by sending a character string to the 
display and letting the data appear from the point where the cursor is.  If the CursorUpdate 
property is TRUE, the CursorRow and CursorColumn properties are changeable.  After the data 
is displayed, the CursorRow and CursorColumn properties are set to the next position after the 
value last data object.  By changing the CursorRow and CursorColumn properties, data can be 
displayed at the discretion of the display.  If the CursorUpdate property is FALSE, the 
CursorRow and CursorColumn properties cannot be changed. 
 
The character attribute can be specified by setting the second parameter of the Display Text 
method to DISP_DT_NORMAL, DISP_DT_BLINK, DISP_DT_REVERSE, or 
DISP_DT_BLINK_REVERSE. 
 
To display data at the current cursor position: 
OPOSLineDisplay1.DisplayText “Data 1”, DISP_DT_NORMAL 
If OPOSLineDisplay1.ResultCode <> OPOS_SUCCESS Then 
 ‘Error 
End If 
 
To start data showing at the upper left hand corner of the display: 
OPOSLineDisplay1.CursorRow = 0 
OPOSLineDisplay1.CursorColumn = 0 
OPOSLineDisplay1.DisplayText “Data 1”, DISP_DT_NORMAL 
If OPOSLineDisplay1.ResultCode <> OPOS_SUCCESS Then 
 ‘Error 
End If 
 
The other way to display data is by using the DisplayTextAt method to determine where the data 
should be shown.  As above, the CursorRow and CursorColumn properties are dependent on 
the CursorUpdate property being TRUE. 
 
To start data showing at the 10th column of the 1st row of the display: 
OPOSLineDisplay1.DisplayTextAt 0, 10, “Data 1”, DISP_DT_NORMAL 
If OPOSLineDisplay1.ResultCode <> OPOS_SUCCESS Then 
 ‘Error 
End If 
 
To start data showing at the upper left hand corner of the display: 
OPOSLineDisplay1.DisplayTextAt 0, 0, “Data 1”, DISP_DT_NORMAL 
If OPOSLineDisplay1.ResultCode <> OPOS_SUCCESS Then 
 ‘Error 
End If 
 
The InterCharacterWait method can be used to create a time interval between displayed data.  
By sending a large number as a parameter, the time between characters is made large, and 
smaller numbers will make the interval shorter.  The default value is “0”. 
 



 
OPOS ADK 

Application Development Guide 

35

When marquee mode has not been set and the InterCharacterWait property is set to 0, the 
display is in "immediate mode" and the specified data will be displayed in the display field 
instantly.  If the InterCharacterWait property is set to a value other than 0, the display is placed 
in "teletype mode".  Data will be displayed one character at a time separated by the specified 
interval.  Use these modes to create the desired display effects. 

 
If data is set that is longer than the logical field, the letters will scroll until the entire data string 
has been displayed.  Due to this, the data at the beginning of the string that is pushed off the top 
of the editing window will disappear.  Please confirm the size of the window before displaying 
data. 
 
If more than 0x80 data is sent, please use the BinaryConversion. 
 
The following is the example of the programming. 
 

OPOSLineDisplay1.CharacterSet = 858   * Code page: PC858 

*Printing EURO characters 

OPOSLineDisplay1.BinaryConversion = OPOS_BC_NIBBLE 

OPOSLineDisplay1.DisplayText “=5=5=5”,DISP_DT_NORMAL 

 

OPOSLineDisplay1.BinaryConversion = OPOS_BC_DECIMAL 

OPOSLineDisplay1.DisplayText “213213213”,DISP_DT_NORMAL 
 
If an un-displayable character is sent with a data string, that character is not displayed but the 
character’s position will be included by the cursor.  Please confirm that all characters sent are 
displayable. 

 

4.4  Window Clear/Refresh 
The RefreshWindow method is used to update any specified window.  By passing the window 
number to the device as a parameter, the window to refresh can be chosen. 
 
Dim Wno1 As Long 
Dim Wno2 As Long 
OPOSLineDisplay1.CreateWindow 0,0,2,11,2,14 
Wno1 = OPOSLineDisplay1.CurrentWindow 
OPOSLineDisplay1.DisplayText “Window 1”, DISP_DT_NORMAL 
  | 
OPOSLineDisplay1.CreateWindow 0,0,1,20,1,20 
Wno2 = OPOSLineDisplay1.CurrentWindow 
OPOSLineDisplay1.DisplayText “Window 2”, DISP_DT_NORMAL 
  | 
OPOSLineDisplay1.RefreshWindow Wno1 
 
In the above program, the windows Wno1 and Wno2 are created with different parameters and 
data is sent to display on each.  After both windows are created, the data passed to window 
Wno2 is showing on the display.  The RefreshWindow is used to update window Wno1, bringing 
Wno1 to the top and allowing its data to be shown on the display.  After specifying Wno1 with 
the RefreshWindow method, Wno1 is placed in the CurrentWindow property. 
 
To clear data from a logical window, use the ClearText method.  The entire logical field of the 
window will be cleared. 
 



 
OPOS ADK 

Application Development Guide 

36

To make re-displaying process easy to understand, windows with overlapping parts have been 
created here.   In an application, these overlapping windows may develop inconsistencies, 
therefore they are not recommended to use. 
 
 

4.5  Descriptors 
Descriptors can be turned ON/OFF on displays with descriptor displaying capabilities.  The 
descriptor ability of a display can be checked with the CapDescriptors property.  Descriptors can 
be shown on a display by using the SetDescriptor method.  The descriptor position is 
determined by setting a parameter.  The number of descriptors that can be shown on a display 
varies depending on the device model being used and can be checked by using the 
DeviceDescriptors property.  The ClearDescriptors method will clear all descriptors, or can be 
used to clear specific descriptors by setting the attribute parameter of the SetDescriptor method. 
 
The following is an example of a program to turn descriptors ON/OFF. 
 
To display all descriptors: 
 
Dim I As Long 
If OPOSLineDisplay1.CapDescriptors = True Then 
 For I = 0 To OPOSLineDisplay1.DeviceDescriptors - 1 
  OPOSLineDisplay1.SetDescriptor I, DISP_SD_ON 

Next I 
End If 
 
To display the third descriptor: 
 
If OPOSLineDisplay1.CapDescriptors = True Then 
 OPOSLineDisplay1.SetDescriptor 2, DISP_SD_ON 
End If 
 
To clear all descriptors: 
 
If OPOSLineDisplay1.CapDescriptors = True Then 
 OPOSLineDisplay1.ClearDescriptors 
End If 
 
To clear the third descriptor: 
 
If OPOSLineDisplay1.CapDescriptors = True Then 
 OPOSLineDisplay1.SetDescriptor 2, DISP_SD_OFF 
End If 
 
 



 
OPOS ADK 

Application Development Guide 

37

4.6  Scrolling the Display 
The data on a display screen can be scrolled.  The entire logical field of a window is used to 
show and hide data to create the scrolling effect. 
 
Scrolling performs differently when the size of the physical field and logical field are the same 
and when they are different. 
 
The following are examples of how to use the logical and physical fields to scroll data on the 
display. 
 
When the physical and logical fields are the same size: 
 
OPOSLineDisplay1.CreateWindow 0,0,2,10,2,10 
OPOSLineDisplay1.DisplayTextAt 0,0, “This is scroll data.”, DISP_DT_NORMAL 
 
The above code results in the following data showing on the display. 
This is sc 
roll data. 
 
After this is accomplished, the ScrollText method is used to scroll the data left or right. 
 
OPOSLineDisplay1.ScrollText DISP_ST_LEFT, 2 
 
This line moves the data left two columns, resulting in the following display. 
is is sc 
ll data. 
The window has been scrolled to the left two columns, so the first two characters have 
disappeared.  Next, the program will use the ScrollText method to move the data right. 
 
OPOSLineDisplay1.ScrollText DISP_ST_RIGHT, 2 
 
This line results in the following data showing on the display. 
  is is sc 
  ll data. 
As can be seen, the data has been moved to the right by two columns, but data that was pushed 
beyond the logical field boundary has disappeared and cannot be recovered. 
 
To move the data up or down, the same method is used. 
 
OPOSLineDisplay1.ScrollText DISP_ST_UP, 1 
 
This line results in the following data showing on the display. 
  ll data. 
 
The second line shows nothing.  Using DISP_ST_DOWN to move the data down will not bring 
back the first line because it has been moved beyond the logical field’s boundaries. 
 
When the physical and logical fields are different sizes: 
 
OPOSLineDisplay1.CreateWindow 0,0,2,10,2,20 
OPOSLineDisplay1.DisplayTextAt 0,0, “This is scroll data.  OPOS ADK XXX Co. LTD!*” 
 
The above code results in the following data showing on the display. 
This is Sc 
OPOS ADK X 



 
OPOS ADK 

Application Development Guide 

38

After this is accomplished, the ScrollText method is used to scroll the data left or right. 
 
OPOSLineDisplay1.ScrollText DISP_ST_LEFT, 2 
 
This line moves the data left two columns, resulting in the following display. 
is is scro 
OS ADK XXX 
The window has been scrolled to the left two columns, bringing out the next two columns from 
the logical field, which contain “ro” and “XX “.  Next, the program will use the ScrollText method 
to move the data right. 
 
OPOSLineDisplay1.ScrollText DISP_ST_RIGHT, 2 
 
This line results in the following data showing on the display. 
This is sc 
OPOS ADK X 
As can be seen, the data has been moved to the right by two columns, and the data that was 
pushed beyond the physical field boundary has been recovered. 
 
Setting a value that is beyond the boundary of the logical field,  
 
OPOSLineDisplay1.ScrollText DISP_ST_LEFT, 25 
 
will result in the following data showing on the display. 
roll data. 
N Co. LTD!* 
No error will be returned after using this command.  
 
When scrolling up or down in a window where the physical field and logical field only differs in 
width, there is no difference from when both fields are exactly the same size. 
 
When scrolling up or down in a window where the fields are of different height, characters that 
cannot be seen in the display can be displayed again, but when scrolling left or right, the window 
acts the same as if both the physical field and logical fields are the same size. 
 
 

4.7  Marquee Settings 
A marquee is a character string that is scrolled across the display in the direction and style 
specified by the settings.   
 
There are two types of marquees: In-place type and walking type.  For details on these types of 
marquee, please refer to UPOS.  The marquee type can be chosen by setting the 
MarqueeFormat property. 

 
By setting the MarqueeType property to DISP_MT_INIT, the marquee string to be displayed can 
be specified.  When DISP_MT_INIT is set, the DisplayText, DisplayTextAt, or ClearText 
methods can be used.  At this time, display management cannot be performed.  After this, by 
setting the MarqueeType property to a value other than DISP_MT_NONE or DISP_MT_ INIT, 
the marquee function will start.  To stop a marquee, set the MarqueeType property to 
DISP_MT_NONE.  When a marquee is started, the specified character string will scroll until the 
marquee function is stopped. When the MarqueeType property is set from DISP_MT_NONE to 
DISP_MT_LEFT/RIGHT/UP/DOWN, the character strings that are displayed at that moment will 
be the target of the marquee. 

 
There are two other properties besides the MarqueeType that affect the marquee.  The first, 



 
OPOS ADK 

Application Development Guide 

39

MarqueeUnitWait, can be used to create a pause before each data character is displayed.  This 
property is valid for all scrollable characters. The second property is MarqueeRepeatWait, which 
creates a pause in between the display of data strings.  After a data string has been shown, the 
program waits for the amount of time specified in the property and then displays the same string 
again. 
 
Marquee functions can only be used on displays that support marquees.  To confirm a display’s 
ability to move a marquee up and down, check the CapVMarquee property.  For left and right 
movement, check the CapHMarquee property. 
 
The following is the procedure needed to use a marquee: 
 
1. Confirm that the display supports marquee settings. (CapVMarquee and CapHMarquee). 
2. Decide the marquee display field. 
3. Build a window by the CreateWindow method. 
4. Choose either place type or walk type at MarqueeFormat property. 
5. Set the display speed and interval using properties.(MarqueeRepeatWait and 

MarqueeUnitWait) 
6. Set the MarqueeType property to DISP_MT_INIT. 
7. The data string to become the marquee is shown by using the DisplayText or DisplayTextAt 

method. 
8. Set the MarqueeType property to something other than DISP_MT_NONE and 

DISP_MT_INIT. 
 
Marquees cannot be shown on window 0.  To display a marquee, it is necessary to create a 
window for use by the marquee. 
 
Marquees can be displayed when the logical field is larger than the physical field. 
 
The following is an example of creating and displaying a marquee. 
 
[Marquee ON] 
 
If OPOSLineDisplay1.CapHMarquee = True Then 
OPOSLineDisplay1.CreateWindow 0,0,1,20,1,33 
OPOSLineDisplay1.MarqueeFormat  = DISP_MF_WALK ‘walking type 
OPOSLineDisplay1.MarqueeUnitWait = 100   ‘100 milliseconds 
OPOSLineDisplay1.MarqueeRepeatWait = 300   ‘300 milliseconds 
OPOSLineDisplay1.MarqueeFormat = DISP_MT_INIT 
OPOSLineDisplay1.DisplayText “Welcome to our shop!!! Thank you.”, DISP_DT_NORMAL 
OPOSLineDisplay1.MarqueeType = DISP_MT_LEFT  ‘Scroll left 
End If 
 
The data string “Welcome to our shop!!! Thank you.” will be repeatedly displayed on the first row 
of the window and scrolled to the left. 
 
The following is a list of actions that should result from the above code: 
 

1.  The character string ‘Welcome to our shop!!’ will be displayed from the end of the   
   physical field  one character at a time after the delay specified in the MarqueeUnitWait 
  property. 

2.  After the entire character string has been displayed, the display waits for the 
amount of  
     time set in the 
MarqueeRepeatWait property.  After the time interval has passed, the screen will be cleared and 
the marquee will start displaying again from number 1. 



 
OPOS ADK 

Application Development Guide 

40

 
To disable the marquee function: 

 
OPOSLineDisplay1.MarqueeType = DISP_MT_NONE 
 
It is possible for the marquee to be set for multiple windows at the same time.  However, the 
field position of the windows can affect the way that the marquee is displayed.  When displaying 
the marquee in multiple windows at the same time, please confirm that there are no conflicts 
between each window field. 
 
 

4.8  Testing with the CheckHealth Method 
Line displays support the CheckHealth method’s Level 1, 2 and 3 setting. The tests can be used 
to ensure the correct connection of the device. For more details, please refer to the "EPSON 
OPOS ADK MANUAL APPLICATION DEVELOPMENT GUIDE LineDisplay (DM-D1xx/ DM-
D2xx)". 
 
 

4.9  Setting the Glyph Character Definition 

The Glyph character is a special character defined by the user. Only one Glyph character 
can be defined in each execution of the method. The character data to define the Glyph 
character expresses the dot which is turned on and off in the display area as a bit unit, 
and specifies the obtained value. 
 

The DefineGlyph method is used to define the Glyph character. Specify the defined character 

code and the defined character data. After they are defined, the Glyph character can be 

displayed by using the DisplayText method and the DisplayTextAt method. 

 

The Glyph character definition function is effective only on the display where the function is 

provided. The presence of the function can be confirmed with the CapCustomGlyph property. 

In the definition of the Glyph character, three related properties are involved. One is the 

CustomGlyphList property. This property shows the character code that can be defined by the 

DefineGlyph method. The other two properties are GlyphHeight and GlyphWidth, which show 

the size of the Glyph character. The values of these three properties are different depending 

on the display. Refer to the "EPSON OPOS ADK MANUAL APPLICATION DEVELOPMENT 

GUIDE LineDisplay (DM-D1xx/ DM-D2xx)" for details. 

 

Follow the procedure below to use the Glyph definition. 

1) Check the Glyph definition function. (CapCustomGlyph). 

2) Check the character code in which Glyph can be defined. (CustomGlyphList). 

3) Check the size of the character in which Glyph can be defined. (GlyphHeight & 

GlyphWidth). 

4) Define the Glyph character using the DefineGlyph method, with consideration of 



 
OPOS ADK 

Application Development Guide 

41

CustomGlyphList, GlyphHeight, and GlyphWidth (explained in the description part of the 

program). 

5) To display the defined character, use the DisplayText method and the DisplayTextAt 

method. 

The definition program of the Glyph character is described as follows: 

[When the Glyph character in the following figure is defined with: GlyheHeight = 7, GlyphWidth 

= 5, character code 49 (“1”)] 

The format of the defined character data is as follows: 

 
 
 
 
 
 
 
 

 

 

  

The displayed data is expressed in binary value, where the dot that turns on is 1 and the dot 

that turns off is 0. After this value is converted into a form corresponding to BinaryConversion, 

specify for the DefineGlyph method and define the Glyph character. The following program is 

an example where BinaryConversion= OPOS_BC_NIBBLE. 

 

OPOSLineDisplay1.BinaryConversion = OPOS_BC_NIBBLE 

OPOSLineDisplay1.DefineGlyph(49, 08041209040201) 

 

Afterwards, if you want to display the defined character, add the following line. 

OPOSLineDisplay1.DisplayText(“1”, DISP_MT_NONE) 

 

* Notes 

The Glyph character registered by the DefineGlyph method does not release the Glyph 

character as long as the Close method is not called. When specifying a character code, use a 

code that does not cause trouble to the normal display. 
 
 

00001000 
00000100 
00010010 
00001001 
00000100 
00000010 
00000001 

Binary 
08 
04 
12 
09 
04 
02 
01 

Hexadecimal Bit position 

GlyphWidth ( 5 ) 

GlyphHeight ( 7 ) 

0123456 7 



 
OPOS ADK 

Application Development Guide 

42

Section 5.  MICR 

Programming examples of how to use API functions relating to MICR devices are shown below. 
 

5.1  Form Insertion/Removal 
If a MICR device is going to be used with the system, there are methods to allow check insertion 
into and removal from the device. 
 
The BeginInsertion only checks the state of the MICR, because the MICR’s jaw is always open.  
When the EndInsertion method is used to insert a check into the MICR, the MICR is placed in a 
state of readiness and awaits the check insertion.   
 
When the BeginRemoval method is used to remove a check from the MICR, the MICR is again 
placed in a state of readiness and awaits the check removal.  Using the EndRemoval method 
will cause the MICR to close this state of removal. 
 
The BeginInsertion and BeginRemoval methods both use a parameter to pass the time the 
MICR is to wait for check insertion/removal before issuing a time-out which will close the ready 
state.  If the check is not inserted or removed within the time specified, the method returns an 
OPOS_E_TIMEOUT result code to the application. 
 
If methods are used on a MICR that is an internal part of a POSPrinter and the printer is in a 
BUSY state (sending or receiving data, etc.), then the methods will return an OPOS_E_BUSY 
result code to the application.  If OPOS_E_BUSY is returned, the application must wait until the 
printer is no longer busy or continue trying until the method is successful. 
 
The following is an example of how to read check data by inserting/removing the check from the 
MICR. 
 
Dim RC As Long 
RC = OPOSMICR1.BeginInsertion (5000) 
If RC = OPOS_SUCCESS Then 
RC = OPOSMICR1.EndInsertion 
If RC = OPOS_SUCCESS Then 
  RC = OPOSMICR1.BeginRemoval (5000) 
  If RC = OPOS_SUCCENSS Then 

   RC = OPOSMICR1.EndRemoval  
  Else 
   ‘Error 
  End If 
Else 
  ‘Error 
End If 
Else 
     ‘Error 
End If 
 
OPOSMICR1.DataEventEnabled = TRUE 
 
When the above code is run, the methods await the check data’s DataEvent.  When the 
EndInsertion method is actually run, in order to receive data, a data event is fired to the device 



 
OPOS ADK 

Application Development Guide 

43

by check insertion.  
 
 

5.2  Reading Data from the MICR 
When data comes from the MICR, a DataEvent is fired to inform the application.  DataEvent 
management requires the use of the MICR’s properties to read the data from a check.  Once a 
DataEvent is fired, the DataEventEnabled property is set to FALSE, so the application will not be 
able to receive any further data.  After the data from the first DataEvent has been managed or 
when it is necessary to read data from another check, it is necessary to set the 
DataEventEnabled property to TRUE.  If there is any data that has been spooled while the 
property was FALSE, a DataEvent is immediately fired and the data is sent to the program.  If 
there is no data waiting, no DataEvent is fired. 
 
Information received from a check’s data is separated and placed into corresponding properties.  
Before a DataEvent is fired, the control’s properties will contain either the previous check’s data, 
or if no check has been read, the properties will contain empty strings.  The following is a list of 
the properties used to store a check’s data.  These properties can be used to manage the data 
needed from a check. 
 
RawData Data read from the MICR is stored with no changes. MICR specific 

characters will be re-written into substitution characters.  (For an 
explanation of these characters, please consult UPOS.) 

AccountNumber The account number written on the check. 
Amount The amount of the check. 
BankNumber The bank’s number. 
EPC The check’s EPC. 
SerialNumber The check’s serial number. 
TransmitNumber The check’s transmit Number. 
CheckType The check’s check type. 
CountryCode The check’s country code. 
 
Below is an example of a program that manages check data received from a MICR device using 
the DataEvent. 
 
Global GANData As String 
Global GAmData As String 
Global GCData As String 
Global GBNData As String 
 
Private Sub OPOSMICR1_DataEvent(ByVal Status As Long) 
GANData = OPOSMICR1.AccountNumber 
GBNData = OPOSMICR1.BankNumber 
GAmData = OPOSMICR1.Amount 
GCData =  OPOSMICR1.CountryCode 
OPOSMICR1.DataEventEnabled = True 
End Sub 
 



 
OPOS ADK 

Application Development Guide 

44

 
5.3  Error Management 

If any error occurs on the device while check data is being read, the application is informed by 
an event. By checking the ResultCode parameter and the ResultCodeExtended parameter, the 
error can be checked and handled. When this event occurs, ResultCode is passed the value 
OPOS_E_FAILURE. If the data is not valid after an error, the ErrorLocus property is passed an 
OPOS_EL_INPUT value, and if the data is valid, an OPOS_EL_INPUT_DATA value is passed.  
OPOS_EL_INPUT is sent to ErrorLocus and OPOS_EMICR_COMPORT is sent to 
ResultCodeExtended when there is a port’s error during data transmission, and 
OPOS_EL_INPUT_DATA is sent to ErrorLocus and OPOS_EMICR_DATAERROR is sent to 
ResultCodeExtended when there is a problem with the data format. All data is sent after an 
OPOS_EMICR_DATAERROR DataEvent is fired.  After the data in which the error occurred has 
been managed, the ResultCodeExtended parameter is given the value 
OPOS_EMICR_DATAEND, and an ErrorEvent containing the value OPOS_EL_INPUT is sent to 
the ErrorLocus parameter. 
This shows that some of the data passed by the DataEvent between the time that the 
OPOS_EMICR_DATAERROR and OPOS_EMICR_DATAEND occurred has an error in it.  It is 
not possible to determine what data contains the error. However, even if the device says the 
data is valid after an error occurs, it is recommended that the check data be read in again.  By 
using the ErrorLocus parameter, errors can be managed.  Depending on what value is in the 
ErrorLocus parameter, the program can choose either OPOS_ER_CLEAR (clear the data) or 
OPOS_ER_CONTINUEINPUT (continue using the data).  Placing one of these values in the 
pErrorResponse parameter will allow the program to handle the error.  When the ErrorLocus 
parameter is set to OPOS_EL_INPUT, pErrorResponse is set to OPOS_ER_CLEAR as a 
default, and if ErrorLocus is set to OPOS_EL_INPUT_DATA, pErrorResponse is set to 
OPOS_ER_CONTINUEINPUT.  When OPOS_EL_INPUT is the set value, 
OPOS_ER_CONTINUEINPUT cannot be specified. 
 
Private Sub OPOSMICR1_ErrorEvent(ByVal ResultCode As Long, 
ByVal ResultCodeExtended As Long, 
ByVal ErrorLocus As Long 
pErrorResponse As Long) 
‘Consult ResultCode, then manage the error. 
If ErrorLocus = OPOS_EL_INPUT_DATA Then ‘Data is invalid 
pErrorResponse = OPOS_ER_CLEAR ‘Clear invalid data 
End If 
End Sub 
 
The reason for this is, for example, when data is entered in the data input buffer and an error 
event occurs, if OPOS_ER_CLEAR is used, the data that has been enter into the buffer is 
cleared.  If OPOS_ER_CONTINUEINPUT is used, the data remains in the buffer for use by the 
program.  The data in the buffer will follow the directions of the ErrorLocus property value.   
 
The reasons for and types of errors that cause an ErrorEvent to be fired are listed below. 

ResultCode Reason 
OPOS_E_FAILURE The MICR data was not received 

properly. 
OPOS_E_FAILURE There is a problem with the device 

or its connection, and an error is 
originated from the port. 

 
If an OPOS_E_FAILURE occurs, please confirm the MICR’s settings and connections. 
 



 
OPOS ADK 

Application Development Guide 

45

5.4  Testing with the CheckHealth Method 
MICR devices support the CheckHealth method’s Level 1 and Level 3 setting.  The tests can be 
used to ensure the correct connection of the device. For more details, please refer to the 
"EPSON OPOS ADK MANUAL APPLICATION DEVELOPMENT GUIDE MICR (TM Series)". 
 
 



 
OPOS ADK 

Application Development Guide 

46

Section 6.  Cash Drawers 

Programming examples of how to use API functions relating to a Cash Drawer are shown below. 
 

6.1  Drawer Open/Close 
The cash drawer is opened by using the OpenDrawer method.  The DrawerOpened property 
can be used to check the current state of the drawer.  To pause the program until the drawer is 
closed, the WaitForDrawerClose method is used.  When using this method, the computer makes 
a sound that starts when the drawer is opened or after a specified amount of time, and lasts until 
the drawer is closed or for a specified time. The amount of time is passed to the method by a 
parameter.  The frequency of the beep can also be controlled by parameters. Until the drawer is 
closed, the WaitForDrawerClose method will not return control of the application.  The beep 
frequency and time settings depend on the Windows API beep functions.    When setting the 
beep functions parameters in Windows 2000, Windows XP or WIndows Vista, follow the 
specified settings. The CashDrawer control is not able to tell when the drawer is shut while a 
beep is sounding.  Please use the BeepDuration parameter to make the beep sound as short as 
possible for the situation. 
 
The following is an example of a program to open and close a cash drawer. 
 
If Not OPOSCashdrawer1.DrawerOpened Then 
 OPOSCashdrawer1.OpenDrawer 
OPOSCashdrawer1.WaitForDrawerClose 10000, 1000, 100, 100 
End If 
 

6.2  Checking Drawer Status 
There are methods other than explained in section 2.4.1 that can be used to check drawer 
status.  A StatusUpdateEvent is fired whenever the drawer is opened or closed. 
 
The following are examples of programs that use events to check if the drawer has been opened 
or closed. 
 
[Main Program] 
 
Global DrawerFlag As Boolean 
If Not OPOSCashdrawer1.DrawerOpened Then 
 DrawerFlag = True 
 OPOSCashdrawer1.OpenDrawer 

While (DrawerFlag = True) ‘This part uses timer management to 
   DoEvents 

Wend    ‘check the status of DrawerFlag. 
End If 
 



 
OPOS ADK 

Application Development Guide 

47

[Event Management] 
 
Private Sub OPOSCashdrawer1_StatusUpdateEvent(ByVal Data As Long) 
 If Data = False Then 
   DrawerFlag = False 
  End If 
End Sub 
 

6.3  Testing with the CheckHealth Method 
 

Cash Drawers support the CheckHealth method’s Level 1, 2 and 3 setting. The tests can be 
used to ensure the correct connection of the device. For more details, please refer to the 
"EPSON OPOS ADK MANUAL APPLICATION DEVELOPMENT GUIDE CashDrawer". 
 

6.4  Multi-drawer Configuration Support 
 

Depending on a printer or terminal supports, the multi-drawer configuration connects more than 
one drawer independently via the same channel or hardware port. For more details about the 
multi-drawer configuration, please confirm the information on the connected printer or terminal. 
 

6.4.1  Multi-drawers with One Status 
When the CapMultiDrawerDetect property is set to False, the operation shows the multi-drawer 
with one status. The multiple drawers can be setting, but one status is shared. If either of the 
drawers is opened, the StatusUpdateEvent is fired indicating that the both drawers are opened. 
When either of the drawers is closed, nothing is changed. Only when the both drawers are 
closed, the status indicates that the drawers are closed. 

 
6.4.2  Multi-drawers with Two Status 

When the CapMultiDrawerDetect property is set to TRUE, the operation shows the multi-
drawers with two statuses. Each drawer can have its status individually. 

 
 



 
OPOS ADK 

Application Development Guide 

48

Section 7.  CheckScanner 

Programming examples of how to use API functions relating to CheckScanner devices are 
shown below. This device is Epson special. 
 

7.1  Form Insertion/Removal 
If a CheckScanner device is going to be used with the system, there are methods to allow check 
insertion into and removal from the device. 
 
The BeginInsertion only check the state of the CheckScanner, because the CheckScanner’s jaw 
is always open. When the EndInsertion method is used to insert a check into the CheckScanner, 
the CheckScanner is placed in a state of readiness and awaits the check’s insertion. Then, the 
EndInsertion method actually reads a check.  
 
After executing BeginInsertion and EndInsertion, and then reading a check, you can handle data 
using RetrieveImage, RetrieveMemory, and StoreImage. 
 
When the BeginRemoval method is used to remove a check from the CheckScanner, the 
CheckScanner is again placed in a state of readiness and awaits the check’s removal. Using the 
EndRemoval method will cause the CheckScanner to close this state of removal. 
 
The BeginInsertion and BeginRemoval methods both use a parameter to pass the time the 
CheckScanner is to wait for check insertion/removal before issuing a time out, which will close 
the readied state.  If the check is not inserted or removed within the time specified, the method 
returns an OPOS_E_TIMEOUT result code to the application. 
 
If methods are used on a CheckScanner that is an internal part of a POS printer and the printer 
is in a BUSY state (sending or receiving data, etc.), then the methods will return an 
OPOS_E_BUSY result code to the application.  If OPOS_E_BUSY is returned, the application 
must wait until the printer is no longer busy or continue trying until the method is successful. 
 
The following is an example of how to read check data by inserting/removing the check from the 
CheckScanner. 
 
Dim RC As Long 
RC = OPOSCheckScanner1.BeginInsertion (5000) 
If RC = OPOS_SUCCESS Then 
RC = OPOSCheckScanner1.EndInsertion 
If RC = OPOS_SUCCESS Then 
 RC = OPOSCheckScanner1.RetrieveImage(ALL) 
  If RC = OPOS_SUCCENSS Then 
   ’Success 
  Else 
   ‘Error 
  End If 
  RC = OPOSCheckScanner1.BeginRemoval (5000) 
  RC = OPOSCheckScanner1.EndRemoval 
Else 
  ‘Error 
End If 
Else 



 
OPOS ADK 

Application Development Guide 

49

     ‘Error 
End If 
 
OPOSCheckScanner1.DataEventEnabled = TRUE 
 
When the above code is run, the methods await the check data’s DataEvent. DataEvent is 
issued when data is set to the property, that is, after you execute RetrieveImage or 
RetrieveMemory. Since the EndInsertion method only reads a check and does not set the 
property, DataEvent is not issued.  
 
 

7.2  Reading Data from the CheckScanner 
When the scanned data is set to the property, a DataEvent is fired to inform the application. 
DataEvent management requires the use of the CheckScanner ‘s properties to read the data 
from a check.  Once a DataEvent is fired, the DataEventEnabled property is set to FALSE, so 
the application will not be able to receive any further data.  After the data from the first 
DataEvent has been managed or when it is necessary to read data from another check, it is 
necessary to set the DataEventEnabled property to TRUE.  If there is any data that has been 
spooled while the property was FALSE, a DataEvent is immediately fired and the data is sent to 
the program.  If there is no data waiting, no DataEvent is fired. 
 
Information received from a check’s data is placed in the properties. The read data is stored in 
the ImageData property. In this case, the storage format varies according to the settings of the 
ImageFormat property.  
Before a DataEvent is fired, the control’s properties will contain either the previous check’s data, 
or if no check has been read, the properties will contain empty strings.  The following is a list of 
the properties used to store a check’s data.   
 
The following is an example of a program that manages check data received from a 
CheckScanner device using the DataEvent. 
 
[Main Program] 
 Global DataReadFlag As Boolean 
DataReadFlag = False 

RC = OPOSCheckScanner1.RetriveImage(ENTIRE_IMAGE) 
While (DataReadFlag = False) ‘Wait data read end 

 DoEvents 
Wend     
 ‘ImageData  Read 
 
[Event management] 
Private Sub OPOSCheckScanner1_DataEvent(ByVal Status As Long) 
        DataReadFlag = True 
End Sub 
 



 
OPOS ADK 

Application Development Guide 

50

7.3  Saving/Reading/Deleting Scanned Data 
CheckScanner can save, read, and delete scanned data. Saved data is not deleted although 
you call the Close method. Be sure that data is not deleted unless you call the ClearImage 
method. 

 
The following code shows how to save scanned data.  

Dim lRet As Long 
Dim lFlag As Long 
 

  ‘Sets FileID 
  OPOSCheckScanner1.FileID = "ID1" 
  OPOSCheckScanner1.ImageTagData = "Tag1" 
  ‘Saves the storage data 
  lFlag = ECHK_CROP_AREA_ENTIRE_IMAGE 
  lRet = OPOSCheckScanner1.StoreImage(lFlag) 

 If lRet = OPOS_SUCCENSS Then 
   ’Success 
  Else 
   ‘Error 
  End If 
The code saves data using values set in the FileID and ImageTagData properties. The FileIndex 
property is automatically allocated when data is saved successfully. You cannot save it by 
specifying the FileID and ImageTagData properties corresponding to the data already saved. 
 
The following code shows how to read the saved data. (It uses ImageTagData and reads the 
data.) 

Dim lRet As Long 
Dim lFlag As Long 
 

  ‘Sets ImageTagData 
  OPOSCheckScanner1. ImageTagData = "Tag1" 
  ‘Reads the storage data 
  lFlag = ECHK_LOCATE_BY_IMAGETAGDATA 
  lRet = OPOSCheckScanner1.RetrieveMemory (lFlag) 

 If lRet = OPOS_SUCCENSS Then 
   ’Success 
  Else 
   ‘Error 
  End If 
After the RetrieveMemory method is executed and the data read, information about the read 
data is set to the FileID, FileIndex, ImageTagData, and ImageData properties. 

 
The following code shows how to delete the saved data. (It uses FileIndex and reads the data.) 

Dim lRet As Long 
Dim lFlag As Long 
 

  ‘Sets FileIndex 
  OPOSCheckScanner1.FileIndex = 1 
  ‘Deletes the storage data 
  lFlag = ECHK_LOCATE_BY_FILEINDEX 
  lRet = OPOSCheckScanner1.ClearImage (lFlag) 

 If lRet = OPOS_SUCCENSS Then 
   ’Success 
  Else 
   ‘Error 



 
OPOS ADK 

Application Development Guide 

51

  End If 
If you want to delete all saved data, set ECHK_CLR_ALL to the ClearImage parameter and then 
call it. 

 
 

7.4  Error Management 
If an error occurs on the device while check data is being read, the application is informed by an 
event. By checking the ResultCode parameter and the ResultCodeExtended parameter, the 
error can be checked and handled. When this event occurs, ResultCode is passed the value 
OPOS_E_FAILURE. If the data is not valid after an error, the ErrorLocus property is passed an 
OPOS_EL_INPUT value, and if the data is valid, an OPOS_EL_INPUT_DATA value is passed.  
OPOS_EL_INPUT_DATA is sent to ErrorLocus and OPOS_ECHK_DATAERROR is sent to 
ResultCodeExtended when there is a problem with the data format. All data is sent after an 
OPOS_ECHK_DATAERROR DataEvent is fired.  After the data in which the error occurred has 
been managed, the ResultCodeExtended parameter is given the value 
OPOS_ECHK_DATAEND, and an ErrorEvent containing the value OPOS_EL_INPUT is sent to 
the ErrorLocus parameter. 
This shows that some of the data passed by the DataEvent between the time that the 
OPOS_ECHK_DATAERROR and OPOS_ECHK_DATAEND occurred has an error in it.  It is not 
possible to determine what data contains the error. However, even if the device says the data is 
valid after an error occurs, it is recommended that the check data be read in again.  By using the 
ErrorLocus parameter, errors can be managed.  Depending on what value is in the ErrorLocus 
parameter, the program can choose either OPOS_ER_CLEAR (clear the data) or 
OPOS_ER_CONTINUEINPUT (continue using the data).  Placing one of these values in the 
pErrorResponse parameter will allow the program to handle the error.  When the ErrorLocus 
parameter is set to OPOS_EL_INPUT, pErrorResponse is set to OPOS_ER_CLEAR as a 
default, and if ErrorLocus is set to OPOS_EL_INPUT_DATA, pErrorResponse is set to 
OPOS_ER_CONTINUEINPUT.  When OPOS_EL_INPUT is the set value, 
OPOS_ER_CONTINUEINPUT cannot be specified. 
 
Private Sub OPOSCheckScanner1_ErrorEvent(ByVal ResultCode As Long, 
ByVal ResultCodeExtended As Long, 
ByVal ErrorLocus As Long 
pErrorResponse As Long) 
‘Consult ResultCode, then manage the error. 
If ErrorLocus = OPOS_EL_INPUT_DATA Then ‘Data is invalid 
pErrorResponse = OPOS_ER_CLEAR ‘Clear invalid data 
End If 
End Sub 
 
For example, if OPOS_ER_CLEAR is specified upon occurrence of an error, all the stored data 
in an input buffer that are read from MSR are cleared. If OPOS_ER_CONTINUEINPUT is 
specified, the data are kept in the input buffer.  However, the validity of the data with error is 
decided by ErrorLocus value.   
 
The reasons for and types of errors that cause an ErrorEvent to be fired are listed below. 

ResultCode Reason 
OPOS_E_FAILURE The Check data was not received 

properly. 
OPOS_E_FAILURE There is a problem with the device or 

its connection, and an error is 
originated from the port. 

 
If an OPOS_E_FAILURE occurs, please confirm the CheckScanner’s settings and connections. 
 



 
OPOS ADK 

Application Development Guide 

52

7.5  Testing with the CheckHealth Method 
CheckScanner devices support the CheckHealth method’s Level 1 and Level 3 setting.  The 
tests can be used to ensure the correct connection of the device. For more details, please refer 
to the "EPSON OPOS ADK MANUAL APPLICATION DEVELOPMENT GUIDE CheckScanner". 
 
 

 



 
OPOS ADK 

Application Development Guide 

53

Section 8.  Electronic Journal 

Programming examples of how to use API functions relating to ElectronicJournal devices are 
shown below. This device is Epson special. 
 

8.1  Writing Electronic Journal data 
When the property is set to “true”, ServiceObject of Electronic Journal enables output data of 
POSPrinter writeable. Even POSPrinter ServiceObject is not printable, the property can be set to 
“true”. When initialization of Electronic Journal file is not completed, writing output data of 
POSPrinter will be error and error event queuing. 
 
The printing data are stored in HDD that for saving the files through the SetupPOS setting 
specified. When a free disk size reaches to a set value, StatusUpdateEvent will be notified. 
When a process for writing output data from the printer is failed StatusUpdateEvent will be 
notified. 
 

8.2  Marker setting 
The printing data are stored with contiguous data. 
When the write data is acquired and printed, the marker are specified to indicate the data range 
as an index. Several markers can be added on the same place. 
 
Strings can be specified as a marker name is as follows: 

• Strings exclude ASCII code (0x00-0x1F and 0x7F) 
• Maximum string size: 1024 characters 

The null character cannot be used for marker. 
 
(Example) Acquired data range: 1 day's data 
  Start Marker: The day's work starting time 
  End Marker: The day's work closing time 
 
(Example) Acquired data range: 1 receipt's data 
  Start Marker: Before the appropriate receipt printing start 
  End Marker: After the appropriate receipt printing end 
 
When the Printer's print method executed non-simultaneously is printed completed, at the time 
the ElectronicJournal data is stored. Therefore, add the marker after the Printer's 
OutputCompleteEvent is notified. 
 

8.3  Specifications for specified range 
The process becomes successful when a specified range is empty. It is the same as when 
process of the empty printing data.  
 QueryContent method: The empty extract file is created. 
 PrintContentFile method: Ends without printing any data. 
 

8.4  Non-simultaneously printing of ElectronicJournal data 
When AsyncMode property is set to “true”, the ElectronicJournal data is executed with non-
simultaneous print. When non-simultaneous print of Electronic Journal data is completed, the 



 
OPOS ADK 

Application Development Guide 

54

method notifies OutputCompleteEvent. When one of the processes is failed, ErrorEvent is 
notified. 
The suspend mode is available at non-simultaneously printing. 
When suspend mode is set, all the non-simultaneous output processes will be suspended. And 
restarts printing by the ResumePrintContent method. 
 
When suspend mode is set, all the non-simultaneous output processes will be suspended. 
Suspend mode is for posing printing process when event error is issued during non-
simultaneous outputs, and executable process is limited during the time.  
 
<When the method is executed while State property is OPOS_S_ERROR> 
A command is sent to clear data in the device buffer in case there is any because printing 
process is suspended due to error. 
After printing is restarted, transaction being sent when the SuspendPrintContent method is 
executed will also be restarted. 
 
<When the method is executed while State property is OPOS_S_BUSY> 
When Suspended property is set to “true”, SUCCESS is returned. 
After transaction being sent when the method is executed is completed, non-simultaneous print 
process will be stopped. 
When print error occurs after the SuspendPrintContent method is executed, a result will be the 
same as when the State property is executed while OPOS_S_ERROR occurs. 
When printing is suspended correctly, output data will be printed after a transaction being sent 
when the SuspendPrintContent method is executed. 


	Section 1.  Preface
	Section 2.  General Information
	2.1  Object Names
	2.2  Device Information Reference
	2.3  Opening and Closing Devices
	2.4  Device Claim/Release
	2.5  Device Enable/Disable
	2.6  Device Self Diagnostics
	2.7  Character Sets
	2.8  Event Management
	2.8.1  DataEvent
	2.8.2  DirectIOEvent
	2.8.3  ErrorEvent
	2.8.4  OutputCompleteEvent
	2.8.5  StatusUpdateEvent

	2.9  Results of Changing Properties or Running Methods
	2.10  Extended Errors
	2.11  Clearing the Input and Output Buffers
	2.12  Capability Property
	2.13  Notifying Power Status
	2.14  Device Statistics

	Section 3.  POS Printer
	3.1  Printer Stations
	3.2  Escape Sequences
	3.3  MapMode Settings
	3.4  Line Information
	3.5  Sending Data to the Printer
	3.5.1  Synchronous Printing on One Station
	3.5.2  Asynchronous Printing on One Station
	3.5.3  Printing on Two Stations at The Same Time
	3.5.4  Setting the Logo
	3.5.5  Printing Bar Codes
	3.5.6  Bitmap Printing
	3.5.7  Rotated Printing
	3.5.8  Immediate Printing
	3.5.9  Collective Printing

	3.6  Form Insertion/Removal and Slip Printing
	3.7  Paper Cutting
	3.8  Checking the Printer State
	3.9  Printer Errors and Status
	3.10  Clearing the Output Buffer
	3.11  Testing with the CheckHealth Method
	3.12  Cartridge State
	3.13  Color Printing
	3.14  Mark Sensed Paper Support
	3.15  Printing on Both Sides
	3.16  Things to Consider when Using Properties

	Section 4.  Line Display
	4.1  Window Creation/Destruction
	4.2  Window Rows/Columns
	4.3  Showing Data on the Display
	4.4  Window Clear/Refresh
	4.5  Descriptors
	4.6  Scrolling the Display
	4.7  Marquee Settings
	4.8  Testing with the CheckHealth Method
	4.9  Setting the Glyph Character Definition

	Section 5.  MICR
	5.1  Form Insertion/Removal
	5.2  Reading Data from the MICR
	5.3  Error Management
	5.4  Testing with the CheckHealth Method

	Section 6.  Cash Drawers
	6.1  Drawer Open/Close
	6.2  Checking Drawer Status
	6.3  Testing with the CheckHealth Method
	6.4  Multi-drawer Configuration Support
	6.4.1  Multi-drawers with One Status
	6.4.2  Multi-drawers with Two Status


	Section 7.  CheckScanner
	7.1  Form Insertion/Removal
	7.2  Reading Data from the CheckScanner
	7.3  Saving/Reading/Deleting Scanned Data
	7.4  Error Management
	7.5  Testing with the CheckHealth Method

	Section 8.  Electronic Journal
	8.1  Writing Electronic Journal data
	8.2  Marker setting
	8.3  Specifications for specified range
	8.4  Non-simultaneously printing of ElectronicJournal data


